Time-division and code-division SQUID multiplexers for TES

W.B. Doriese LTD-16 (Grenoble, France) Tuesday, 21 July, 2015 intro: TDM & CDM TDM: old & new CDM-32 Time-division and code-division SQUID multiplexer...

0 downloads 116 Views 2MB Size
Time-division and code-division SQUID multiplexers for TES microcalorimeter arrays Randy Doriese, NIST (Boulder, Colorado, USA)

1) TDM and CDM for TES microcals 2) deployed 8x30 TDM architecture 3) new 32-row TDM & CDM architectures intro: TDM & CDM W.B. Doriese

TDM: old & new

LTD-16 (Grenoble, France)

CDM-32

Tuesday, 21 July, 2015

Time-division and code-division SQUID multiplexers for TES microcalorimeter arrays Randy Doriese, NIST (Boulder, Colorado, USA)

new results: • trow = 160 ns

(TDM & CDM)

• sΦ1 < 0.20 µΦ0 / √Hz

(TDM & CDM)

= 2.55 eV @ 6 keV (32-row TDM)

intro: TDM & CDM W.B. Doriese

TDM: old & new

LTD-16 (Grenoble, France)

CDM-32

Tuesday, 21 July, 2015

Collaborators NIST

(Boulder, CO)

Stanford / SLAC (Palo Alto, CA)

Brad Alpert Jim Beall Doug Bennett Ed Denison Lisa Ferreira Colin Fitzgerald Joe Fowler Jiansong Gao John Gard Jim Hays-Wehle Gene Hilton Young Il Joe Vince Kotsubo

Peter Lowell Ben Mates Kelsey Morgan Galen O’Neil Carl Reintsema Nigel Robbins Dan Schmidt Dan Swetz Hide Tatsuno Joel Ullom Leila Vale Brandon Wilson

Kent Irwin

intro: TDM & CDM W.B. Doriese

NASA/GSFC (Greenbelt, MD) Joe Adams Simon Bandler Jay Chervenak Rich Kelley Caroline Kilbourne Scott Porter Steve Smith … and the rest of the NASA team

TDM: old & new

LTD-16 (Grenoble, France)

CDM-32

Tuesday, 21 July, 2015

NIST/Stanford TDM architecture 2 x 2 array is shown as example of N-row x M-column array • wire count scales as M + N (pixel count as M*N)

each colored block is 1 sensor

• TESs are dc-biased • each TES coupled to one SQ1 • rows of SQ1s turned on and off sequentially • columns read out in parallel • each SQ1: flux-locked loop • inefficient BW usage: SQUID noise degrades as √N intro: TDM & CDM W.B. Doriese

TDM: old & new

LTD-16 (Grenoble, France)

CDM-32

Tuesday, 21 July, 2015

NIST/Stanford TDM architecture In TDM and CDM, key performance parameters:

each colored block is 1 sensor

• SQUID noise: for 32 rows, want sΦ1 ≤ 0.25 µΦ0 / √Hz, (non-muxed; ref’d to SQ1) • row-dwell period: for 32 rows, aiming for t row = 160 ns • see: Doriese et al, JLTP 167 pp595–601 (2012) for more details intro: TDM & CDM W.B. Doriese

TDM: old & new

LTD-16 (Grenoble, France)

CDM-32

Tuesday, 21 July, 2015

TDM math • switch pixel polarities between +1 and -1

• rows orthogonal in time • basis set: Walsh matrix

• all detectors sampled at all times (no √N increase in SQ noise)

TDM 1  0 I  0  0  intro: TDM & CDM W.B. Doriese

0

0

1

0

0

1

0

0

0  • basis set is the  0 identity matrix 0  1 

TDM: old & new

LTD-16 (Grenoble, France)

CDM-32

Tuesday, 21 July, 2015

CDM math • switch pixel polarities between +1 and -1

CDM

1 1 1 1   • rows orthogonal in time 1 1  1  1 W4   1  1  1 1 • basis set: Walsh matrix   1  1 1  1   • all detectors sampled

at all times (no √N increase in SQ noise)

TDM 1  0 I  0  0  intro: TDM & CDM W.B. Doriese

0

0

1

0

0

1

0

0

0  • basis set is the  0 identity matrix 0  1 

TDM: old & new

LTD-16 (Grenoble, France)

CDM-32

Tuesday, 21 July, 2015

CDM math

CDM

• switch pixel polarities between +1 and -1

1 1 1 1   • rows orthogonal in time 1 1  1  1 W4   1  1  1 1 • basis set: Walsh matrix   1  1 1  1   • all detectors sampled

at all times (no √N increase in SQ noise)

W4

1

• recover original signals: multiply by inverse Walsh matrix

1  W4 4

intro: TDM & CDM W.B. Doriese

TDM: old & new

LTD-16 (Grenoble, France)

CDM-32

Tuesday, 21 July, 2015

flux-summing CDM architecture 4-row Φ-summing CDM: • each TES coupled to all SQ1s

• 4x SQ1s switched, locked just as in TDM • drop-in compatible with existing TDM systems

see: G.M. Stiehl, et al., APL 100, 072601 (2012)

intro: TDM & CDM W.B. Doriese

• W matrix encoded in TES coupling polarities to SQ1s TDM: old & new

LTD-16 (Grenoble, France)

CDM-32

Tuesday, 21 July, 2015

flux-summing CDM architecture

see: G.M. Stiehl, et al., APL 100, 072601 (2012)

intro: TDM & CDM W.B. Doriese

TDM: old & new

LTD-16 (Grenoble, France)

CDM-32

Tuesday, 21 July, 2015

DFB-crate electronics CLK

DFB

RA16

this crate: 16 cols X 32 rows

NIST digital feedback electronics:

• field-deployed: trow = 320 ns (50 MHz master clock) • now in beta-testing: trow = 160 ns (125 MHz master clock) • see J. Gard & C. Reintsema posters

intro: TDM & CDM W.B. Doriese

QDC power (EMU)

TDM: old & new

LTD-16 (Grenoble, France)

CDM-32

Tuesday, 21 July, 2015

present TDM: highly mature 7 deployed m-cal spectrometers:

• NSLS: 8x30 TDM • APS:

8x30 TDM

• Jyväskylä PIXE: 8x20 TDM • HEATES π – atoms: 8x30 TDM • NIST TR-EXAFS: 8x30 TDM • Lund TR-EXAFS: 8x20 TDM

• LANL / NIST g-ray: 8x32 TDM

intro: TDM & CDM W.B. Doriese

TDM: old & new

LTD-16 (Grenoble, France)

CDM-32

Tuesday, 21 July, 2015

highly mature… but could work better In present 8-column x 30-row X-ray systems, ΔE ~ 4.5 eV. Why? • SQUID noise = 0.4 µΦ0 / √Hz, when aliased, matters

• trow = 320 ns  arrival time within tfr ~10 µs frame matters.

intro: TDM & CDM W.B. Doriese

TDM: old & new

LTD-16 (Grenoble, France)

CDM-32

Tuesday, 21 July, 2015

bandwidth: analog signal chain

all “high-speed” lines & components in TDM system (dc to ~10 MHz)

intro: TDM & CDM W.B. Doriese

TDM: old & new

LTD-16 (Grenoble, France)

CDM-32

Tuesday, 21 July, 2015

bandwidth: analog signal chain

DFB crate

TDM or CDM multiplexer chip

intro: TDM & CDM W.B. Doriese

TDM: old & new

LTD-16 (Grenoble, France)

CDM-32

Tuesday, 21 July, 2015

high-bandwidth pre-amp new 8-col HBWPA: • f3db ~ 20 MHz • G = +151 • en = 0.9 nV / √Hz • responds well to square waves

intro: TDM & CDM W.B. Doriese

TDM: old & new

LTD-16 (Grenoble, France)

CDM-32

Tuesday, 21 July, 2015

high-bandwidth pre-amp new 8-col HBWPA: • f3db ~ 20 MHz • G = +151 • en = 0.9 nV / √Hz • responds well to square waves

• simple, inexpensive chips (~$20 USD / chan.)

intro: TDM & CDM W.B. Doriese

TDM: old & new

LTD-16 (Grenoble, France)

CDM-32

Tuesday, 21 July, 2015

bandwidth of SQ2 loop SQ2-SA loop:

t=L/R

• L ~ 200 nH • SQ2 junctions: 3.5 µm  2.5 μm • SQ2: Rdyn = 4 Ω  8 Ω • f3dB = 2 MHz  4 MHz (trow = 320 ns in deployed system)

intro: TDM & CDM W.B. Doriese

TDM: old & new

LTD-16 (Grenoble, France)

CDM-32

Tuesday, 21 July, 2015

bandwidth of SQ2 loop SQ2-SA loop:

t=L/R

• L ~ 200 nH • SQ2 junctions: 3.5 µm  2.5 μm • SQ2: Rdyn = 4 Ω  8 Ω • f3dB = 2 MHz  4 MHz (trow = 320 ns in deployed system) new mux chips: • Rdyn = 8 Ω  ~30 Ω ! • f3dB = 4 MHz  > 15 MHz (allows 160 ns rows) intro: TDM & CDM W.B. Doriese

TDM: old & new

LTD-16 (Grenoble, France)

CDM-32

Tuesday, 21 July, 2015

mux13b TDM chip

mux13b features: • each SQ1 is a 4-element SA • row addressing via flux switch (Φ0/2  “on”) • no SQ2 • 11 chans. / chip (33 rows  3 chips)

interferometric flux-actuated switches. see: • J. Beyer & D. Drung, Superconductor Sci. & Technol. 21, 105022 (2008). • H.H. Zappe, IEEE Trans. on Magnetics. 13, pp41-47 (1977).

intro: TDM & CDM W.B. Doriese

TDM: old & new

LTD-16 (Grenoble, France)

CDM-32

Tuesday, 21 July, 2015

mux13b TDM chip

mux13b features: • each SQ1 is a 4-element SA • row addressing via flux switch (Φ0/2  “on”) • no SQ2 • 11 chans. / chip (33 rows  3 chips)

interferometric flux-actuated switches. see: • J. Beyer & D. Drung, Superconductor Sci. & Technol. 21, 105022 (2008). • H.H. Zappe, IEEE Trans. on Magnetics. 13, pp41-47 (1977).

intro: TDM & CDM W.B. Doriese

TDM: old & new

LTD-16 (Grenoble, France)

CDM-32

Tuesday, 21 July, 2015

mux13b TDM chip

to the next 11-chan chip in the column…

connected to the rest of the circuit… intro: TDM & CDM W.B. Doriese

TDM: old & new

LTD-16 (Grenoble, France)

CDM-32

Tuesday, 21 July, 2015

mux13b TDM chip

mux13b advantages: • very low noise: sΦ1 = 0.19 µΦ0/√Hz • SQ1 Rdyn ~ 30 Ω • tset = 128 ns • trow = 160 ns • higher fab yield • and… they work GREAT! intro: TDM & CDM W.B. Doriese

TDM: old & new

LTD-16 (Grenoble, France)

CDM-32

Tuesday, 21 July, 2015

Mn Ka spectra: Mn Kα

TDM-32 32-row TDM ! • ΔE: [2.27, 2.89] eV

• 2 rows had no TES • each spectrum: ~13,000 counts (1-σ on ΔE of 0.08 eV)

• t row = 160 ns TES-signal params.: • t+ = 60 µs • t– = 1090 µs • max slew rate = 0.21 A/s intro: TDM & CDM W.B. Doriese

TDM: old & new

LTD-16 (Grenoble, France)

CDM-32

Tuesday, 21 July, 2015

Mn Ka spectrum: TDM-32 combined spectrum: 32-row TDM

2.55 ± 0.01 eV • NIST X-ray sensors: inherent <ΔE> ~ 2.4 eV • 415k total counts

intro: TDM & CDM W.B. Doriese

TDM: old & new

LTD-16 (Grenoble, France)

CDM-32

Tuesday, 21 July, 2015

Mn Ka spectra: TDM-4 and TDM-40 combined: 4-row TDM 2.37 ± 0.06 eV

Mn Kα

• •

this is the “inherent” ΔE 32-row: degrades < 0.2 eV intro: TDM & CDM W.B. Doriese

TDM: old & new

LTD-16 (Grenoble, France)

CDM-32

Tuesday, 21 July, 2015

Mn Ka spectra: TDM-4 and TDM-40

• •

combined: 4-row TDM

combined: 40-row TDM

2.37 ± 0.06 eV

2.79 ± 0.03 eV

Mn Kα

Mn Kα

this is the “inherent” ΔE 32-row: degrades < 0.2 eV intro: TDM & CDM W.B. Doriese

• •

10 rows have no TES SQ noise: ΔE ~ 2.65 eV

TDM: old & new

LTD-16 (Grenoble, France)

CDM-32

Tuesday, 21 July, 2015

new 32-channel CDM chip

CDM-32 (mphi14b) features: • same flux-switch row addressing • each SQ1 is 6-elem. SA: • sΦ1 = 0.17 µΦ0/√Hz • trow = 160 ns

intro: TDM & CDM W.B. Doriese

TDM: old & new

LTD-16 (Grenoble, France)

CDM-32

Tuesday, 21 July, 2015

new 32-channel CDM chip

CDM-32 (mphi14b) features: • same flux-switch row addressing • each SQ1 is 6-elem. SA: • sΦ1 = 0.17 µΦ0/√Hz • trow = 160 ns

intro: TDM & CDM W.B. Doriese

TDM: old & new

LTD-16 (Grenoble, France)

CDM-32

Tuesday, 21 July, 2015

new 32-channel CDM chip

CDM-32 (mphi14b) features: • same flux-switch row addressing • each SQ1 is 6-elem. SA: • sΦ1 = 0.17 µΦ0/√Hz • trow = 160 ns

intro: TDM & CDM W.B. Doriese

TDM: old & new

LTD-16 (Grenoble, France)

CDM-32

Tuesday, 21 July, 2015

CDM-32: first light modulated SQ1 FB signals

SQ row 32

SQ row 1 demodulated TES current signals

TES 32

TES intro: TDM & CDM W.B. Doriese

TDM: old & new

LTD-16 (Grenoble, France)

CDM-32

Tuesday, 21 July, 2015

1

conclusions • new TDM architecture based on flux-actuated switches: • sΦ1 = 0.19 μΦ0 / √Hz • trow = 160 ns • = 2.55 ± 0.01 eV @ 6 keV (32 rows) • = 2.79 ± 0.03 eV @ 6 keV (40 rows) • new CDM-32 with flux-actuated switches is working: • sΦ1 = 0.17 μΦ0 / √Hz • trow = 160 ns • have X-ray pulses from 32-row chip, moving toward spectra

intro: TDM & CDM [email protected] TDM: old & new W.B. Doriese

LTD-16 (Grenoble, France)

CDM-32

Tuesday, 21 July, 2015