Time-division and code-division SQUID multiplexers for TES microcalorimeter arrays Randy Doriese, NIST (Boulder, Colorado, USA)
1) TDM and CDM for TES microcals 2) deployed 8x30 TDM architecture 3) new 32-row TDM & CDM architectures intro: TDM & CDM W.B. Doriese
TDM: old & new
LTD-16 (Grenoble, France)
CDM-32
Tuesday, 21 July, 2015
Time-division and code-division SQUID multiplexers for TES microcalorimeter arrays Randy Doriese, NIST (Boulder, Colorado, USA)
new results: • trow = 160 ns
(TDM & CDM)
• sΦ1 < 0.20 µΦ0 / √Hz
(TDM & CDM)
•
= 2.55 eV @ 6 keV (32-row TDM)
intro: TDM & CDM W.B. Doriese
TDM: old & new
LTD-16 (Grenoble, France)
CDM-32
Tuesday, 21 July, 2015
Collaborators NIST
(Boulder, CO)
Stanford / SLAC (Palo Alto, CA)
Brad Alpert Jim Beall Doug Bennett Ed Denison Lisa Ferreira Colin Fitzgerald Joe Fowler Jiansong Gao John Gard Jim Hays-Wehle Gene Hilton Young Il Joe Vince Kotsubo
Peter Lowell Ben Mates Kelsey Morgan Galen O’Neil Carl Reintsema Nigel Robbins Dan Schmidt Dan Swetz Hide Tatsuno Joel Ullom Leila Vale Brandon Wilson
Kent Irwin
intro: TDM & CDM W.B. Doriese
NASA/GSFC (Greenbelt, MD) Joe Adams Simon Bandler Jay Chervenak Rich Kelley Caroline Kilbourne Scott Porter Steve Smith … and the rest of the NASA team
TDM: old & new
LTD-16 (Grenoble, France)
CDM-32
Tuesday, 21 July, 2015
NIST/Stanford TDM architecture 2 x 2 array is shown as example of N-row x M-column array • wire count scales as M + N (pixel count as M*N)
each colored block is 1 sensor
• TESs are dc-biased • each TES coupled to one SQ1 • rows of SQ1s turned on and off sequentially • columns read out in parallel • each SQ1: flux-locked loop • inefficient BW usage: SQUID noise degrades as √N intro: TDM & CDM W.B. Doriese
TDM: old & new
LTD-16 (Grenoble, France)
CDM-32
Tuesday, 21 July, 2015
NIST/Stanford TDM architecture In TDM and CDM, key performance parameters:
each colored block is 1 sensor
• SQUID noise: for 32 rows, want sΦ1 ≤ 0.25 µΦ0 / √Hz, (non-muxed; ref’d to SQ1) • row-dwell period: for 32 rows, aiming for t row = 160 ns • see: Doriese et al, JLTP 167 pp595–601 (2012) for more details intro: TDM & CDM W.B. Doriese
TDM: old & new
LTD-16 (Grenoble, France)
CDM-32
Tuesday, 21 July, 2015
TDM math • switch pixel polarities between +1 and -1
• rows orthogonal in time • basis set: Walsh matrix
• all detectors sampled at all times (no √N increase in SQ noise)
TDM 1 0 I 0 0 intro: TDM & CDM W.B. Doriese
0
0
1
0
0
1
0
0
0 • basis set is the 0 identity matrix 0 1
TDM: old & new
LTD-16 (Grenoble, France)
CDM-32
Tuesday, 21 July, 2015
CDM math • switch pixel polarities between +1 and -1
CDM
1 1 1 1 • rows orthogonal in time 1 1 1 1 W4 1 1 1 1 • basis set: Walsh matrix 1 1 1 1 • all detectors sampled
at all times (no √N increase in SQ noise)
TDM 1 0 I 0 0 intro: TDM & CDM W.B. Doriese
0
0
1
0
0
1
0
0
0 • basis set is the 0 identity matrix 0 1
TDM: old & new
LTD-16 (Grenoble, France)
CDM-32
Tuesday, 21 July, 2015
CDM math
CDM
• switch pixel polarities between +1 and -1
1 1 1 1 • rows orthogonal in time 1 1 1 1 W4 1 1 1 1 • basis set: Walsh matrix 1 1 1 1 • all detectors sampled
at all times (no √N increase in SQ noise)
W4
1
• recover original signals: multiply by inverse Walsh matrix
1 W4 4
intro: TDM & CDM W.B. Doriese
TDM: old & new
LTD-16 (Grenoble, France)
CDM-32
Tuesday, 21 July, 2015
flux-summing CDM architecture 4-row Φ-summing CDM: • each TES coupled to all SQ1s
• 4x SQ1s switched, locked just as in TDM • drop-in compatible with existing TDM systems
see: G.M. Stiehl, et al., APL 100, 072601 (2012)
intro: TDM & CDM W.B. Doriese
• W matrix encoded in TES coupling polarities to SQ1s TDM: old & new
LTD-16 (Grenoble, France)
CDM-32
Tuesday, 21 July, 2015
flux-summing CDM architecture
see: G.M. Stiehl, et al., APL 100, 072601 (2012)
intro: TDM & CDM W.B. Doriese
TDM: old & new
LTD-16 (Grenoble, France)
CDM-32
Tuesday, 21 July, 2015
DFB-crate electronics CLK
DFB
RA16
this crate: 16 cols X 32 rows
NIST digital feedback electronics:
• field-deployed: trow = 320 ns (50 MHz master clock) • now in beta-testing: trow = 160 ns (125 MHz master clock) • see J. Gard & C. Reintsema posters
intro: TDM & CDM W.B. Doriese
QDC power (EMU)
TDM: old & new
LTD-16 (Grenoble, France)
CDM-32
Tuesday, 21 July, 2015
present TDM: highly mature 7 deployed m-cal spectrometers:
• NSLS: 8x30 TDM • APS:
8x30 TDM
• Jyväskylä PIXE: 8x20 TDM • HEATES π – atoms: 8x30 TDM • NIST TR-EXAFS: 8x30 TDM • Lund TR-EXAFS: 8x20 TDM
• LANL / NIST g-ray: 8x32 TDM
intro: TDM & CDM W.B. Doriese
TDM: old & new
LTD-16 (Grenoble, France)
CDM-32
Tuesday, 21 July, 2015
highly mature… but could work better In present 8-column x 30-row X-ray systems, ΔE ~ 4.5 eV. Why? • SQUID noise = 0.4 µΦ0 / √Hz, when aliased, matters
• trow = 320 ns arrival time within tfr ~10 µs frame matters.
intro: TDM & CDM W.B. Doriese
TDM: old & new
LTD-16 (Grenoble, France)
CDM-32
Tuesday, 21 July, 2015
bandwidth: analog signal chain
all “high-speed” lines & components in TDM system (dc to ~10 MHz)
intro: TDM & CDM W.B. Doriese
TDM: old & new
LTD-16 (Grenoble, France)
CDM-32
Tuesday, 21 July, 2015
bandwidth: analog signal chain
DFB crate
TDM or CDM multiplexer chip
intro: TDM & CDM W.B. Doriese
TDM: old & new
LTD-16 (Grenoble, France)
CDM-32
Tuesday, 21 July, 2015
high-bandwidth pre-amp new 8-col HBWPA: • f3db ~ 20 MHz • G = +151 • en = 0.9 nV / √Hz • responds well to square waves
intro: TDM & CDM W.B. Doriese
TDM: old & new
LTD-16 (Grenoble, France)
CDM-32
Tuesday, 21 July, 2015
high-bandwidth pre-amp new 8-col HBWPA: • f3db ~ 20 MHz • G = +151 • en = 0.9 nV / √Hz • responds well to square waves
• simple, inexpensive chips (~$20 USD / chan.)
intro: TDM & CDM W.B. Doriese
TDM: old & new
LTD-16 (Grenoble, France)
CDM-32
Tuesday, 21 July, 2015
bandwidth of SQ2 loop SQ2-SA loop:
t=L/R
• L ~ 200 nH • SQ2 junctions: 3.5 µm 2.5 μm • SQ2: Rdyn = 4 Ω 8 Ω • f3dB = 2 MHz 4 MHz (trow = 320 ns in deployed system)
intro: TDM & CDM W.B. Doriese
TDM: old & new
LTD-16 (Grenoble, France)
CDM-32
Tuesday, 21 July, 2015
bandwidth of SQ2 loop SQ2-SA loop:
t=L/R
• L ~ 200 nH • SQ2 junctions: 3.5 µm 2.5 μm • SQ2: Rdyn = 4 Ω 8 Ω • f3dB = 2 MHz 4 MHz (trow = 320 ns in deployed system) new mux chips: • Rdyn = 8 Ω ~30 Ω ! • f3dB = 4 MHz > 15 MHz (allows 160 ns rows) intro: TDM & CDM W.B. Doriese
TDM: old & new
LTD-16 (Grenoble, France)
CDM-32
Tuesday, 21 July, 2015
mux13b TDM chip
mux13b features: • each SQ1 is a 4-element SA • row addressing via flux switch (Φ0/2 “on”) • no SQ2 • 11 chans. / chip (33 rows 3 chips)
interferometric flux-actuated switches. see: • J. Beyer & D. Drung, Superconductor Sci. & Technol. 21, 105022 (2008). • H.H. Zappe, IEEE Trans. on Magnetics. 13, pp41-47 (1977).
intro: TDM & CDM W.B. Doriese
TDM: old & new
LTD-16 (Grenoble, France)
CDM-32
Tuesday, 21 July, 2015
mux13b TDM chip
mux13b features: • each SQ1 is a 4-element SA • row addressing via flux switch (Φ0/2 “on”) • no SQ2 • 11 chans. / chip (33 rows 3 chips)
interferometric flux-actuated switches. see: • J. Beyer & D. Drung, Superconductor Sci. & Technol. 21, 105022 (2008). • H.H. Zappe, IEEE Trans. on Magnetics. 13, pp41-47 (1977).
intro: TDM & CDM W.B. Doriese
TDM: old & new
LTD-16 (Grenoble, France)
CDM-32
Tuesday, 21 July, 2015
mux13b TDM chip
to the next 11-chan chip in the column…
connected to the rest of the circuit… intro: TDM & CDM W.B. Doriese
TDM: old & new
LTD-16 (Grenoble, France)
CDM-32
Tuesday, 21 July, 2015
mux13b TDM chip
mux13b advantages: • very low noise: sΦ1 = 0.19 µΦ0/√Hz • SQ1 Rdyn ~ 30 Ω • tset = 128 ns • trow = 160 ns • higher fab yield • and… they work GREAT! intro: TDM & CDM W.B. Doriese
TDM: old & new
LTD-16 (Grenoble, France)
CDM-32
Tuesday, 21 July, 2015
Mn Ka spectra: Mn Kα
TDM-32 32-row TDM ! • ΔE: [2.27, 2.89] eV
• 2 rows had no TES • each spectrum: ~13,000 counts (1-σ on ΔE of 0.08 eV)
• t row = 160 ns TES-signal params.: • t+ = 60 µs • t– = 1090 µs • max slew rate = 0.21 A/s intro: TDM & CDM W.B. Doriese
TDM: old & new
LTD-16 (Grenoble, France)
CDM-32
Tuesday, 21 July, 2015
Mn Ka spectrum: TDM-32 combined spectrum: 32-row TDM
2.55 ± 0.01 eV • NIST X-ray sensors: inherent <ΔE> ~ 2.4 eV • 415k total counts
intro: TDM & CDM W.B. Doriese
TDM: old & new
LTD-16 (Grenoble, France)
CDM-32
Tuesday, 21 July, 2015
Mn Ka spectra: TDM-4 and TDM-40 combined: 4-row TDM 2.37 ± 0.06 eV
Mn Kα
• •
this is the “inherent” ΔE 32-row: degrades < 0.2 eV intro: TDM & CDM W.B. Doriese
TDM: old & new
LTD-16 (Grenoble, France)
CDM-32
Tuesday, 21 July, 2015
Mn Ka spectra: TDM-4 and TDM-40
• •
combined: 4-row TDM
combined: 40-row TDM
2.37 ± 0.06 eV
2.79 ± 0.03 eV
Mn Kα
Mn Kα
this is the “inherent” ΔE 32-row: degrades < 0.2 eV intro: TDM & CDM W.B. Doriese
• •
10 rows have no TES SQ noise: ΔE ~ 2.65 eV
TDM: old & new
LTD-16 (Grenoble, France)
CDM-32
Tuesday, 21 July, 2015
new 32-channel CDM chip
CDM-32 (mphi14b) features: • same flux-switch row addressing • each SQ1 is 6-elem. SA: • sΦ1 = 0.17 µΦ0/√Hz • trow = 160 ns
intro: TDM & CDM W.B. Doriese
TDM: old & new
LTD-16 (Grenoble, France)
CDM-32
Tuesday, 21 July, 2015
new 32-channel CDM chip
CDM-32 (mphi14b) features: • same flux-switch row addressing • each SQ1 is 6-elem. SA: • sΦ1 = 0.17 µΦ0/√Hz • trow = 160 ns
intro: TDM & CDM W.B. Doriese
TDM: old & new
LTD-16 (Grenoble, France)
CDM-32
Tuesday, 21 July, 2015
new 32-channel CDM chip
CDM-32 (mphi14b) features: • same flux-switch row addressing • each SQ1 is 6-elem. SA: • sΦ1 = 0.17 µΦ0/√Hz • trow = 160 ns
intro: TDM & CDM W.B. Doriese
TDM: old & new
LTD-16 (Grenoble, France)
CDM-32
Tuesday, 21 July, 2015
CDM-32: first light modulated SQ1 FB signals
SQ row 32
SQ row 1 demodulated TES current signals
TES 32
TES intro: TDM & CDM W.B. Doriese
TDM: old & new
LTD-16 (Grenoble, France)
CDM-32
Tuesday, 21 July, 2015
1
conclusions • new TDM architecture based on flux-actuated switches: • sΦ1 = 0.19 μΦ0 / √Hz • trow = 160 ns • = 2.55 ± 0.01 eV @ 6 keV (32 rows) • = 2.79 ± 0.03 eV @ 6 keV (40 rows) • new CDM-32 with flux-actuated switches is working: • sΦ1 = 0.17 μΦ0 / √Hz • trow = 160 ns • have X-ray pulses from 32-row chip, moving toward spectra
intro: TDM & CDM [email protected] TDM: old & new W.B. Doriese
LTD-16 (Grenoble, France)
CDM-32
Tuesday, 21 July, 2015