Silicon Carbide PRELIMINARY
SJEP120R125 Product Summary
Normally-OFF Trench Silicon Carbide Power JFET
BVDS RDS(ON)max ETS,typ
Features: - Compatible with Standard Gate Driver ICs - Positive Temperature Coefficient for Ease of Paralleling - Temperature Independent Switching Behavior - 175 °C Maximum Operating Temperature - RDS(on)max of 0.125 Ω - Voltage Controlled 4 - Low Gate Charge - Low Intrinsic Capacitance Applications: - Solar Inverter - SMPS - Power Factor Correction - Induction Heating - UPS - Motor Drive
1200 0.125 170
V Ω µJ
D(2,4)
G(1)
TO-247 1
2
3 S(3) Internal Schematic
MAXIMUM RATINGS Parameter
Symbol
Conditions
Value
ID, Tj=125
Tj = 125 °C
15
ID, Tj=175
Tj = 175 °C
10
Pulsed Drain Current (1) Short Circuit Withstand Time
IDM
TC = 25 °C
30
A
tSC
VDD < 800 V, TC < 125 °C
50
µs
Power Dissipation
PD
TC = 25 °C
136
W
Gate-Source Voltage
VGS
static
-15 to +3
V
AC(2)
-15 to +15
V
-55 to +175
°C
260
°C
Continuous Drain Current
Operating and Storage Temperature Lead Temperature for Soldering
Tj, Tj,stg Tsold
1/8" from case < 10 s
Unit A
(1)
Limited by pulse width (2) RgEXT = 1 ohm, tp < 200ns
THERMAL CHARACTERISTICS Parameter
Symbol
Value Typ
Max
Thermal Resistance, junction-to-case
Rth,JC
-
1.1
Thermal Resistance, junction-to-ambient
Rth,JA
-
50
May 2009
Unit °C / W
Rev 1.8 1/7
Silicon Carbide PRELIMINARY
SJEP120R125
ELECTRICAL CHARACTERISTICS Parameter
Symbol
Conditions
Min
Value Typ
Max
1200 -
100 300
600 -
V
-
1
-
µA
-
10
-
-
-0.1 -0.1
-0.3 -
-
0.09
0.125
Unit
Off Characteristics Drain-Source Blocking Voltage
Total Drain Leakage Current
Total Gate Reverse Leakage
BVDS
IDSS
IGSS
VGS = 0 V, ID = 600 µA VDS = 1200 V, VGS = 0 V, Tj = 25oC VDS = 1200 V, VGS = 0 V, Tj = 175oC VDS = 1200 V, VGS < -15 V, Tj = 25oC VDS = 1200 V, VGS < -15 V, Tj = 175oC VGS = -15 V, VDS = 0V VGS = -15 V, VDS = 1200V
mA
On Characteristics Drain-Source On-resistance
Gate Threshold Voltage Gate Forward Current Gate Resistance
RDS(on)
VGS(th) IGFWD RG RG(ON)
ID = 12 A, VGS = 3 V, Tj = 25 °C ID = 12 A, VGS = 3 V, Tj = 125 °C VDS = 1 V, ID = 34 mA VGS = 3 V f = 1 MHz, drain-source shorted VGS >2.7V; See Figure 5
Ω -
0.20
-
0.75 -
1.00 200 8 0.5
1.25 -
V mA Ω Ω
-
610 90 85
-
pF
-
50
-
-
10 12 30 25 70 100 170 10 15 30 25 85 100 185 30 1 24
-
Dynamic Characteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance Effective Output Capacitance, energy related
Ciss Coss Crss
VDD = 100 V
Co(er)
VDS = 0 V to 480 V, VGS = 0 V
Switching Characteristics Turn-on Delay Rise Time Turn-off Delay Fall Time Turn-on Energy Turn-off Energy Total Switching Energy Turn-on Delay Rise Time Turn-off Delay Fall Time Turn-on Energy Turn-off Energy Total Switching Energy Total Gate Charge Gate-Source Charge Gate-Drain Charge
May 2009
ton tr toff tf Eon Eoff Ets ton tr toff tf Eon Eoff Ets Qg Qgs Qgd
VDS = 600 V, ID = 12 A, Inductive Load, TJ = 25oC Gate Driver = +15V, -10V, RgEXT = 5ohm See Figure 15 and application note for gate drive recommendations VDS = 600 V, ID = 12 A, Inductive Load, TJ = 150oC Gate Driver = +15V, -10V, RgEXT = 5ohm See Figure 15 and application note for gate drive recommendations
VDS = 600 V, ID = 10 A, VGS = + 2.5 V
ns
µJ
ns
µJ
nC
Rev 1.8 2/7
Silicon Carbide PRELIMINARY
SJEP120R125
Figure 1. Typical Output Characteristics
Figure 2. Typical Output Characteristics
ID = f(VDS); Tj = 25 °C; parameter: VGS
ID = f(VDS); Tj = 125 °C; parameter: VGS 20 ID, Drain-Source Current (A)
ID, Drain-Source Current (A)
40 3.0 V
30 2.5 V
20 2.0 V
10
1.5 V
0
3.0 V
15
2.5 V 10
2.0 V
5
1.5 V
0 0
2 4 VDS, Drain-Source Voltage (V)
6
0
2 4 VDS, Drain-Source Voltage (V)
6
Figure 3. Typical Output Characteristics
Figure 4. Typical Transfer Characteristics
ID = f(VDS); Tj = 175 °C; parameter: VGS
ID = f(VGS); VDS = 5 V 30
12 ID, Drain-Source Current (A)
ID, Drain-Source Current (A)
3.0 V 2.5 V
9
2.0 V 6
3
1.5 V
0 0
1
2 3 4 5 VDS, Drain-Source Voltage (V)
0.50 1.00 1.50 2.00 2.50 VGS, Gate-Source Voltage (V)
Figure 5. Gate-Source Current
Figure 6. Drain-Source On-resistance
IGS = f(VGS); parameter: Tj
RDS(on) = f(ID); VGS = 3.0; parameter: Tj
6 5 4 3 2 1 0
0.40 0.30
RDS(on), Drain-Source On-resistance (Ω)
IGS, Gate-Source Current (A)
10
0 0.00
6
0.50
175oC 25oC
175oC 2
3
4
5
6
0.20 25oC
0.10 0.00 1.5
2.0
2.5
3.0
3.00
0.70 0.60 150oC
0.50 0.40
125oC
0.30 0.20
25oC
0.10 0.00 0
VGS, Gate-Source Voltage (V)
May 2009
20
4
8
12
16
20
ID, Drain Current (A)
Rev 1.8 3/7
Silicon Carbide PRELIMINARY Figure 7. Drain-Source On-resistance
Figure 8. Drain-Source On-resistance
RDS(ON) = f(Tj); parameter: IGS
RDS(ON) = f(IGS); Tj = 25oC
0.30 100mA
0.25
500mA 0.20 0.15 0.10 0.05 0.00 0
50
100
150
0.104
RDS(on), Drain-Source On-resistance (Ω)
0.35
RDS(on), Drain-Source On-resistance (Ω)
SJEP120R125
0.102 0.100 0.098 0.096 0.094 0.092 0.090 0.088 0.086 0.1
200
Tj, Junction Temperature (°C)
1000.0
Figure 10. Gate Charge
1.E+04
3.0 VGS, Gate-Source Voltage (V)
C, Capacitance (pF)
100.0
Qg = f(VGS); VDS = 600V; ID = 5A, Tj = 25oC
C = f(VDS); VGS = 0 V; f = 1 MHz
1.E+03 Ciss 1.E+02 Crss
Coss
1.E+01
1.E+00
2.5 2.0 1.5 1.0 0.5 0.0
0
300
600
900
1200
0
VDS, Drain-Source Voltage (V)
10
20
30
Qg, Total Gate Charge (nC)
Figure 11. Gate Threshold Voltage
Figure 12. Drain-Source Leakage
Vth = f(Tj)
ID = f(VDS); VGS = 0V; parameter: Tj
1.50
1E-03
-1.5mV/oC ID, Drain Leakage Current (A)
VTH, Gate Threshold Voltage (V)
10.0
IGS, Gate-Source Current (mA)
Figure 9. Typical Capacitance
Max
1.25
Typical
1.00
0.75
0.50 0
50
100
150
1E-04
175oC
1E-05
125oC 1E-06 1E-07
25oC
1E-08 1E-09
200
0 300 600 900 1200 BVDS, Drain-Source Blocking Voltage (V)
Tj, Junction Temperature (oC)
May 2009
1.0
Rev 1.8 4/7
Silicon Carbide PRELIMINARY
Figure 13. Switching Energy Losses
Figure 14. Switching Energy Losses
Es = f(ID); VDS = 600V; GD = +15V/-10V, RGEXT = 5ohm
Es = f(RGEXT); VDS = 600V; ID = 12A, GD = +15V/-10V
300
600 Tj = 25oC Tj = 150oC
250
ETS
E, Switching Energy (uJ)
E, Switching Energy (uJ)
SJEP120R125
200 150
EOFF
100
EON
50 0 2
6
10
14
Tj = 25oC Tj = 150oC
500
ETS
400 EOFF
300
EON
200 100 0
18
0
ID, Drain Current (A)
10 20 30 RgEXT, External Gate Resistance, (Ω)
40
Figure 15. Inductive Load Switching Circuit
Figure 18. Transient Thermal Impedance Zth(jc) = f(tP); parameter: Duty Ratio Zth(jc), Transient Thermal Impedance (°C/W)
1.E+01
1.E+00 0.5 0.3 1.E-01
1.E-02
0.1 0.05 0.02 0.01
single 1.E-03 1.E-06
1.E-05
1.E-04
1.E-03
1.E-02
1.E-01
tP, Pulse Width (s)
May 2009
Rev 1.8 5/7
Silicon Carbide PRELIMINARY
DIM A A1 A2 b b1 b2 c D D1 D2 e E E1 L L1 Q ØP ØP1
May 2009
SJEP120R125
MILLIMETERS MIN MAX 4.903 5.157 2.273 2.527 1.853 2.108 1.073 1.327 2.873 3.381 1.903 2.386 0.600 0.752 20.823 21.077 17.393 17.647 1.063 1.317 5.450 15.773 16.027 13.893 14.147 20.053 20.307 4.168 4.472 6.043 6.297 7.823 8.077 7.063 7.317
INCHES MIN MAX 0.193 0.203 0.090 0.100 0.073 0.083 0.042 0.052 0.113 0.133 0.042 0.052 0.024 0.029 0.820 0.830 0.685 0.695 0.042 0.052 0.215 0.621 0.631 0.547 0.557 0.789 0.799 0.165 0.175 0.238 0.248 0.308 0.318 0.278 0.288
Rev 1.8 6/7
Silicon Carbide PRELIMINARY
SJEP120R125
Published by SemiSouth Laboratories, Inc. 201 Research Boulevard Starkville, MS 39759 USA © SemiSouth Laboratories, Inc. 2008 Information in this document supersedes and replaces all information previously supplied. Information in this document is provided solely in connection with SemiSouth products. SemiSouth Laboratories, Inc. reserves the right to make changes, corrections, modifications or improvements, to this document without notice. No license, express or implied to any intellectual property rights is granted under this document.
Unless expressly approved in writing by an authorized representative of SemiSouth, SemiSouth products are not designed, authorized or warranted for use in military, aircraft, space, life saving, or life sustaining applications, nor in products or systems where failure or malfunction may result in personal injury, death, or property or environmental damage.
May 2009
Rev 1.8 7/7