Silicon Carbide SJEP120R125

- SMPS - Power Factor Correction Internal Schematic - Induction Heating - UPS ... Silicon Carbide MILLIMETERS INCHES MIN MAX MIN MAX 0.203 A1 …...

0 downloads 158 Views 196KB Size
Silicon Carbide PRELIMINARY

SJEP120R125 Product Summary

Normally-OFF Trench Silicon Carbide Power JFET

BVDS RDS(ON)max ETS,typ

Features: - Compatible with Standard Gate Driver ICs - Positive Temperature Coefficient for Ease of Paralleling - Temperature Independent Switching Behavior - 175 °C Maximum Operating Temperature - RDS(on)max of 0.125 Ω - Voltage Controlled 4 - Low Gate Charge - Low Intrinsic Capacitance Applications: - Solar Inverter - SMPS - Power Factor Correction - Induction Heating - UPS - Motor Drive

1200 0.125 170

V Ω µJ

D(2,4)

G(1)

TO-247 1

2

3 S(3) Internal Schematic

MAXIMUM RATINGS Parameter

Symbol

Conditions

Value

ID, Tj=125

Tj = 125 °C

15

ID, Tj=175

Tj = 175 °C

10

Pulsed Drain Current (1) Short Circuit Withstand Time

IDM

TC = 25 °C

30

A

tSC

VDD < 800 V, TC < 125 °C

50

µs

Power Dissipation

PD

TC = 25 °C

136

W

Gate-Source Voltage

VGS

static

-15 to +3

V

AC(2)

-15 to +15

V

-55 to +175

°C

260

°C

Continuous Drain Current

Operating and Storage Temperature Lead Temperature for Soldering

Tj, Tj,stg Tsold

1/8" from case < 10 s

Unit A

(1)

Limited by pulse width (2) RgEXT = 1 ohm, tp < 200ns

THERMAL CHARACTERISTICS Parameter

Symbol

Value Typ

Max

Thermal Resistance, junction-to-case

Rth,JC

-

1.1

Thermal Resistance, junction-to-ambient

Rth,JA

-

50

May 2009

Unit °C / W

Rev 1.8 1/7

Silicon Carbide PRELIMINARY

SJEP120R125

ELECTRICAL CHARACTERISTICS Parameter

Symbol

Conditions

Min

Value Typ

Max

1200 -

100 300

600 -

V

-

1

-

µA

-

10

-

-

-0.1 -0.1

-0.3 -

-

0.09

0.125

Unit

Off Characteristics Drain-Source Blocking Voltage

Total Drain Leakage Current

Total Gate Reverse Leakage

BVDS

IDSS

IGSS

VGS = 0 V, ID = 600 µA VDS = 1200 V, VGS = 0 V, Tj = 25oC VDS = 1200 V, VGS = 0 V, Tj = 175oC VDS = 1200 V, VGS < -15 V, Tj = 25oC VDS = 1200 V, VGS < -15 V, Tj = 175oC VGS = -15 V, VDS = 0V VGS = -15 V, VDS = 1200V

mA

On Characteristics Drain-Source On-resistance

Gate Threshold Voltage Gate Forward Current Gate Resistance

RDS(on)

VGS(th) IGFWD RG RG(ON)

ID = 12 A, VGS = 3 V, Tj = 25 °C ID = 12 A, VGS = 3 V, Tj = 125 °C VDS = 1 V, ID = 34 mA VGS = 3 V f = 1 MHz, drain-source shorted VGS >2.7V; See Figure 5

Ω -

0.20

-

0.75 -

1.00 200 8 0.5

1.25 -

V mA Ω Ω

-

610 90 85

-

pF

-

50

-

-

10 12 30 25 70 100 170 10 15 30 25 85 100 185 30 1 24

-

Dynamic Characteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance Effective Output Capacitance, energy related

Ciss Coss Crss

VDD = 100 V

Co(er)

VDS = 0 V to 480 V, VGS = 0 V

Switching Characteristics Turn-on Delay Rise Time Turn-off Delay Fall Time Turn-on Energy Turn-off Energy Total Switching Energy Turn-on Delay Rise Time Turn-off Delay Fall Time Turn-on Energy Turn-off Energy Total Switching Energy Total Gate Charge Gate-Source Charge Gate-Drain Charge

May 2009

ton tr toff tf Eon Eoff Ets ton tr toff tf Eon Eoff Ets Qg Qgs Qgd

VDS = 600 V, ID = 12 A, Inductive Load, TJ = 25oC Gate Driver = +15V, -10V, RgEXT = 5ohm See Figure 15 and application note for gate drive recommendations VDS = 600 V, ID = 12 A, Inductive Load, TJ = 150oC Gate Driver = +15V, -10V, RgEXT = 5ohm See Figure 15 and application note for gate drive recommendations

VDS = 600 V, ID = 10 A, VGS = + 2.5 V

ns

µJ

ns

µJ

nC

Rev 1.8 2/7

Silicon Carbide PRELIMINARY

SJEP120R125

Figure 1. Typical Output Characteristics

Figure 2. Typical Output Characteristics

ID = f(VDS); Tj = 25 °C; parameter: VGS

ID = f(VDS); Tj = 125 °C; parameter: VGS 20 ID, Drain-Source Current (A)

ID, Drain-Source Current (A)

40 3.0 V

30 2.5 V

20 2.0 V

10

1.5 V

0

3.0 V

15

2.5 V 10

2.0 V

5

1.5 V

0 0

2 4 VDS, Drain-Source Voltage (V)

6

0

2 4 VDS, Drain-Source Voltage (V)

6

Figure 3. Typical Output Characteristics

Figure 4. Typical Transfer Characteristics

ID = f(VDS); Tj = 175 °C; parameter: VGS

ID = f(VGS); VDS = 5 V 30

12 ID, Drain-Source Current (A)

ID, Drain-Source Current (A)

3.0 V 2.5 V

9

2.0 V 6

3

1.5 V

0 0

1

2 3 4 5 VDS, Drain-Source Voltage (V)

0.50 1.00 1.50 2.00 2.50 VGS, Gate-Source Voltage (V)

Figure 5. Gate-Source Current

Figure 6. Drain-Source On-resistance

IGS = f(VGS); parameter: Tj

RDS(on) = f(ID); VGS = 3.0; parameter: Tj

6 5 4 3 2 1 0

0.40 0.30

RDS(on), Drain-Source On-resistance (Ω)

IGS, Gate-Source Current (A)

10

0 0.00

6

0.50

175oC 25oC

175oC 2

3

4

5

6

0.20 25oC

0.10 0.00 1.5

2.0

2.5

3.0

3.00

0.70 0.60 150oC

0.50 0.40

125oC

0.30 0.20

25oC

0.10 0.00 0

VGS, Gate-Source Voltage (V)

May 2009

20

4

8

12

16

20

ID, Drain Current (A)

Rev 1.8 3/7

Silicon Carbide PRELIMINARY Figure 7. Drain-Source On-resistance

Figure 8. Drain-Source On-resistance

RDS(ON) = f(Tj); parameter: IGS

RDS(ON) = f(IGS); Tj = 25oC

0.30 100mA

0.25

500mA 0.20 0.15 0.10 0.05 0.00 0

50

100

150

0.104

RDS(on), Drain-Source On-resistance (Ω)

0.35

RDS(on), Drain-Source On-resistance (Ω)

SJEP120R125

0.102 0.100 0.098 0.096 0.094 0.092 0.090 0.088 0.086 0.1

200

Tj, Junction Temperature (°C)

1000.0

Figure 10. Gate Charge

1.E+04

3.0 VGS, Gate-Source Voltage (V)

C, Capacitance (pF)

100.0

Qg = f(VGS); VDS = 600V; ID = 5A, Tj = 25oC

C = f(VDS); VGS = 0 V; f = 1 MHz

1.E+03 Ciss 1.E+02 Crss

Coss

1.E+01

1.E+00

2.5 2.0 1.5 1.0 0.5 0.0

0

300

600

900

1200

0

VDS, Drain-Source Voltage (V)

10

20

30

Qg, Total Gate Charge (nC)

Figure 11. Gate Threshold Voltage

Figure 12. Drain-Source Leakage

Vth = f(Tj)

ID = f(VDS); VGS = 0V; parameter: Tj

1.50

1E-03

-1.5mV/oC ID, Drain Leakage Current (A)

VTH, Gate Threshold Voltage (V)

10.0

IGS, Gate-Source Current (mA)

Figure 9. Typical Capacitance

Max

1.25

Typical

1.00

0.75

0.50 0

50

100

150

1E-04

175oC

1E-05

125oC 1E-06 1E-07

25oC

1E-08 1E-09

200

0 300 600 900 1200 BVDS, Drain-Source Blocking Voltage (V)

Tj, Junction Temperature (oC)

May 2009

1.0

Rev 1.8 4/7

Silicon Carbide PRELIMINARY

Figure 13. Switching Energy Losses

Figure 14. Switching Energy Losses

Es = f(ID); VDS = 600V; GD = +15V/-10V, RGEXT = 5ohm

Es = f(RGEXT); VDS = 600V; ID = 12A, GD = +15V/-10V

300

600 Tj = 25oC Tj = 150oC

250

ETS

E, Switching Energy (uJ)

E, Switching Energy (uJ)

SJEP120R125

200 150

EOFF

100

EON

50 0 2

6

10

14

Tj = 25oC Tj = 150oC

500

ETS

400 EOFF

300

EON

200 100 0

18

0

ID, Drain Current (A)

10 20 30 RgEXT, External Gate Resistance, (Ω)

40

Figure 15. Inductive Load Switching Circuit

Figure 18. Transient Thermal Impedance Zth(jc) = f(tP); parameter: Duty Ratio Zth(jc), Transient Thermal Impedance (°C/W)

1.E+01

1.E+00 0.5 0.3 1.E-01

1.E-02

0.1 0.05 0.02 0.01

single 1.E-03 1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

tP, Pulse Width (s)

May 2009

Rev 1.8 5/7

Silicon Carbide PRELIMINARY

DIM A A1 A2 b b1 b2 c D D1 D2 e E E1 L L1 Q ØP ØP1

May 2009

SJEP120R125

MILLIMETERS MIN MAX 4.903 5.157 2.273 2.527 1.853 2.108 1.073 1.327 2.873 3.381 1.903 2.386 0.600 0.752 20.823 21.077 17.393 17.647 1.063 1.317 5.450 15.773 16.027 13.893 14.147 20.053 20.307 4.168 4.472 6.043 6.297 7.823 8.077 7.063 7.317

INCHES MIN MAX 0.193 0.203 0.090 0.100 0.073 0.083 0.042 0.052 0.113 0.133 0.042 0.052 0.024 0.029 0.820 0.830 0.685 0.695 0.042 0.052 0.215 0.621 0.631 0.547 0.557 0.789 0.799 0.165 0.175 0.238 0.248 0.308 0.318 0.278 0.288

Rev 1.8 6/7

Silicon Carbide PRELIMINARY

SJEP120R125

Published by SemiSouth Laboratories, Inc. 201 Research Boulevard Starkville, MS 39759 USA © SemiSouth Laboratories, Inc. 2008 Information in this document supersedes and replaces all information previously supplied. Information in this document is provided solely in connection with SemiSouth products. SemiSouth Laboratories, Inc. reserves the right to make changes, corrections, modifications or improvements, to this document without notice. No license, express or implied to any intellectual property rights is granted under this document.

Unless expressly approved in writing by an authorized representative of SemiSouth, SemiSouth products are not designed, authorized or warranted for use in military, aircraft, space, life saving, or life sustaining applications, nor in products or systems where failure or malfunction may result in personal injury, death, or property or environmental damage.

May 2009

Rev 1.8 7/7