Organic Photochromic and Thermochromic Compounds

Organic Photochromic and Thermochromic Compounds Volume 1: Main Photochromic Families ... Preparation of Indoles 30 1.2.3. Preparations of Spiropyrans...

0 downloads 124 Views 3MB Size
Organic Photochromic and Thermochromic Compounds Volume 1: Main Photochromic Families

Edited by

John C. Crano Late of PPG Industries, Inc. Monroeville, Pennsylvania

and

Robert J. Guglielmetti University of Aix-Marseille II Marseille, France



Plenum Press • New York and London

Table of Contents Introduction 1. 2. 3. 4. 5. 6.

Aim and Organization of the Book Brief Historical Survey of Photochromism Definitions of Photochromism Brief Analysis of the Different Chapters and their Main Topics Conclusion and Future Developments References

1 2 2 4 8 9

1. Spiropyrans Robert C. Bertelson 1.1. Introduction 1.2. Synthesis 1.2.1. General Summary 1.2.2. Intermediates for Spiropyrans 1.2.2.1. Fischer's Base Syntheses 1.2.2.2. Fischer's Base Salts by Alkylation of Indolenines . . . . 1.2.2.3. Fischer's Bases from Oxindoles 1.2.2.4. Fischer's Bases by Oxidation of Indolines 1.2.2.5. Substitution in Fischer's Bases 1.2.2.6. Preparations of Indolenines 1.2.2.7. Preparation of Indoles 1.2.3. Preparations of Spiropyrans 1.2.4. Substitution in Spiropyrans 1.3. New Materials. Properties and Structure-Property Relationships 1.3.1. Spiropyrans in Fluid Solutions 1.3.2. Spiropyrans with Long-wavelength Absorption 1.3.3. Spiropyrans as Vapor-Deposited and Amorphous Films 1.3.4. Polymeric Spiropyrans

xv

11 13 13 15 17 19 22 23 27 29 30 31 36 37 37 53 56 57

xvi

Table of Contents

1.3.5. Spiropyran Aggregates 1.3.6. Mechanistic Studies: Photocoloration, Photodecoloration, Fatigue and Photodegradation 1.3.7. Reactions of Spiropyrans with Inorganic Reagents 1.3.8. Spiropyrans in Sol-Gel Matrices 1.3.9. Quantum Mechanical Calculations 1.3.10. Optically Active Spiropyrans 1.4. Applications and Future Trends 1.5. Some Representative Preparations 1.5.1. 6-NitroBIPS 1.5.2. 3-Phenyl Fischer's Base and its Hydroiodide 1.5.3. 5-Formylsalicylaldehyde 1.6. References

59 60 61 62 63 64 65 68 68 69 71 73

2. Spirooxazines Shuichi Maeda 2.1. Introduction 2.2. Structure, Synthesis, and Photochromic Properties 2.2.1. Substitution on the Naphthoxazine Ring Moiety 2.2.2. Substitution on the Indoline Ring Moiety 2.2.3. Other Indolinospirooxazines 2.2.4. Miscellaneous Spirooxazines 2.2.5. Chelation of Spirooxazine Derivatives 2.2.6. Crowned Spirooxazines 2.2.7. Electropolymerization of Spironaphthoxazine-Thiophene Derivatives 2.3. Molecular Structure and Mechanism of the Photochromic Reactions 2.3.1. Nature of the Closed Form 2.3.2. Nature of the Colored Form 2.3.3. Mechanism of the Photochromic Reactions 2.4. Applications 2.4.1. Stabilization of Spirooxazines 2.4.2. Commercial Plastic Photochromic Lenses 2.4.3. Microencapsulated Photochromic Ink 2.4.4. Photochromic Lamiglass 2.5. Synthesis Examples 2.5.1. Synthesis of l,3,3-trimethylspiro[indoline-2,3'-[3H]naphth][2,16][l,4]oxazine] (Compound 1) 2.5.2. Synthesis of 6'-indolino-l,3,3-trimethylspiro[indoline-2,3'-[3H]naphth[2,l-6][l,4]oxazine] (Compound 7) 2.5.3. Synthesis of r,3',3'-trimethylspiro[3tf-naphth][2,l-6][l,4]oxazine-3,2'-piperidine (Compound 16)

85 86 86 87 89 91 93 94 94 96 96 96 99 101 101 102 103 104 105 105 106 106

Table of Contents

xvii

2.5.4. Synthesis of Compound 19 2.6. References

107 107

3. Benzo and Naphthopyrans (Chromenes) Barry Van Gemert 3.1. Introduction 3.1.1. Definition 3.1.2. Historical Perspective 3.1.3. Current Review 3.1.4. Photochromic Mechanism 3.1.5. Performance Testing 3.1.6. Fatigue Testing 3.1.7. Fatigue Specific to Pyrans 3.1.8. Stability and Stabilization 3.2. 3#-Naphtho[2,l-%yrans 3.2.1. Nomenclature 3.2.2. Structure-Photochromic Activity Relationships 3.2.2.1. Substitution at the 1- and 2-Positions 3.2.2.2. Substitution at the 3-Position 3.2.2.3. Pyran Substitution via Heteroaromatic Annellation. . . . 3.2.2.4. Substitution at the 5-Position 3.2.2.5. Substitution at the 6-Position 3.2.2.6. Substitution at the 8-Position 3.2.2.7. Substitution at the 7, 9, and 10-Positions 3.2.2.8. General Note 3.3. 2#-Naphtho[l,2-£>]pyrans 3.3.1. Nomenclature 3.3.2. Substituent Effects 3.3.2.1. Substitution at the 2-Position 3.3.2.2. Substitution at the 5-Position 3.4. 2#-Naphtho[2,3-6]pyrans 3.5. 2#-l-Benzopyrans (Chromenes) 3.5.1. General 3.5.2. Substituent Effects 3.6. Synthetic Methods 3.6.1. Preparation of 3,3-Diphenyl-3#-naphtho[2,l-ft]pyran 3.6.2. Preparation of 2-Methyl-7,7-diphenyl-7#-pyranol[2,3-g]benzothiazole 3.6.3. Preparation of 2,2'-Spiroadamantylidene-2#-naphtho[ 1,2-6]pyran 3.7. Concluding Remarks 3.8. References

Ill Ill Ill 113 113 114 115 116 117 117 117 118 118 119 123 124 124 126 127 127 127 127 128 128 129 131 132 132 133 136 136 136 136 137 137

xviii

Table of Contents

4. Fulgide Family Compounds: Synthesis, Photochromism, and Applications Mei Gong Fan, Lianhe Yu, and Weih Zhao 4.1. Introduction 141 4.2. Fulgides with Aromatic Ring Systems 144 4.2.1. Phenyl Fulgides 144 4.2.2. Nuclear Magnetic Resonance Spectroscopy 145 4.2.3. X-Ray Crystallography 147 4.2.4. UV-Visible Spectroscopy 148 4.2.5. Photochromic Reactions, Substituent Effects and Fatigue Resistance of Phenyl Fulgides 149 4.2.6. Miscellaneous Aryl Aromatic Fulgides 152 4.3. Fulgides with Heterocyclic Ring Systems 154 4.3.1. Furyl Fulgides 154 4.3.1.1. Substituent Effects on the Quantum Yield of Photochromic Reactions of Furyl Fulgides 154 4.3.1.2. oc-Alkyl Substituent Effects on the Photochromism of Furyl Fulgides 155 4.3.1.3. Steric Effects on the Photochromic Behavior of the Alkylidene Group of Furyl Fulgides 156 4.3.1.4. Comprehensive Steric Effect on the Quantum Yield of the Photoreactions of Furyl Fulgides 157 4.3.1.5. Photochromism of Furyl Fulgides in Polymer Matrices . 160 4.3.1.6. Crystal Structures of Furyl Fulgides 161 4.3.1.7. Helical Chirality of Furyl Fulgide 161 4.3.2. Thienyl Fulgides 161 4.3.3. Indolyl Fulgides 164 4.3.4. Pyrryl Fulgides 168 4.3.4.1. Absorption Spectra of Fulgide 62 and its Colored Form (63) 169 4.3.4.2. The Effect of Solvent Polarity on the Absorption Spectra of Fulgide 62 and its Colored Form (63) 171 4.3.4.3. Substituent Effects on the Absorption Spectra of Pyrryl Fulgide 62 and Colored Forms (63) 173 4.3.4.4. Crystal Structure of Fulgide 62n 173 4.3.5. Heteroaromatic Fulgides Containing two Hetero Atoms 174 4.4. Fulgimides, Isofulgimides, Fulgenates, Fulgenolides and Dicyanomethylene Derivatives of Fulgides 176 4.4.1. Fulgimides 176 4.4.2. Isofulgimides 180 4.4.3. Fulgenates and Fulgenolides 180 4.4.4. Tetrahydrofuran-2-one Derivatives 183 4.5. Photochromic Mechanism 185 4.5.1. Chromophores and Excited States of Fulgides 185 4.5.2. E —>• Z Isomerization 186

Table of Contents

4.5.3. Photocyclization Reactions of Fulgides and Derivatives 4.5.4. Heliochromic Reaction 4.6. Applications of Fulgides and their Derivatives 4.6.1. Optical Storage 4.6.2. Actinometry 4.6.3. Photochromic Inks, Paints and Fabrics 4.6.4. Applications in Other Advanced Materials 4.7. Some Examples of Detailed Syntheses 4.8. References

xix

190 194 195 195 197 197 197 198 201

5. Diarylethenes with Heterocyclic Aryl Groups Masahiro Irie 5.1. Introduction 5.2. Synthesis 5.2.1. Diarylperfluorocyclopentenes 5.2.2. Diarylmaleic Anhydrides 5.3. Properties 5.3.1. Thermal Stability 5.3.2. Fatigue-Resistant Character 5.3.3. Absorption Spectra 5.3.4. Response Time 5.4. Molecular Systems with Controlled Functionality 5.4.1. Gated Reactivity 5.4.2. Photoswitching of Electrochemical Properties 5.5. Conclusion 5.6. References

207 208 208 208 209 209 209 211 217 218 218 219 220 221

6. Photochromism of Dihydroindolizines and Related Systems Heinz Dürr 6.1. Introduction 6.2. Syntheses of Photochromic Molecules Based on a 1,5-Electrocyclic Reaction 6.2.1. Type 2 System 6.2.1.1. Cyclopropene: Route (a) 6.2.2.2. Pyrazole Route (b) 6.2.2.3. Retro-1,5-Electrocyclization: Route (c) 6.2.2.4. Diazo: Route (d) 6.2.2. Tetrahydro- and Hexahydroindolizines 6.2.3. Biphotochromic Systems 6.2.3.1. Route 1: Type a and Type b Systems 6.2.3.2. Type с Systems

223 224 226 226 227 227 228 228 228 229 229

XX

,

Table of Contents

6.3. Photochromic Systems with One Heteroatom 6.3.1. Spectra of the Colorless and the Colored Forms 6.3.2. Spectra of Colored Forms 6.3.3. Solvent Effects on the Colored Forms 6.3.4. Thermal Reactions in Solution/Structure—Fading Rate Relationships 6.3.5. Modified Systems: Tetra and Hexahydroindilizines 6.3.6. Mechanism of Photocoloration 6.3.7. Quantum Yield of Photocoloration and Photobleaching 6.4. Photochromic Systems Based on Pentadienyl Anions with Two Heteroatoms 6.4.1. Type 1,2 Systems 6.4.2. Type 2,3 Systems 6.5. Photochromic Systems Based on Pentadienyl Anions with Three Heteroatoms 6.6. Supramolecular and Environmental Effects and Applications 6.6.1. Supramolecular Systems 6.6.2. Photochromic Systems in Liquid Crystalline Phase 6.6.3. Photochromic Systems in Polymers 6.6.3.1. DHI Dissolved in Polymers 6.6.3.2. Polymer-Linked Systems 6.6.4. IR-Sensitive Materials 6.7. Description of Apparatus 6.8. Syntheses of Key Examples 6.9. Conclusions 6.10. References

231 231 233 234 235 238 238 239 240 240 241 242 243 243 245 246 247 250 253 255 259 263 263

7. Photochromic Quinones Valeri Barachevsky 7.1. Introduction 267 7.2. Synthesis of Photochromic Quinones 268 7.2.1. Methylnaphthoquinone 269 7.2.2. Derivatives of Anthraquinone 269 7.2.3. Derivatives of Naphthacenequinone 270 7.2.4. Phenoxypentacenequinone and Derivatives of Phthaloylpyrene . . 273 7.3. Mechanism of Photochromic Transformations in Quinones 274 7.3.1. Photochromism of Naphthoquinone 274 7.3.2. Photochromism of Anthraquinones 275 7.3.2.1. Alkylanthraquinones 275 7.3.2.2. Acyloxyanthraquinones 276 7.3.2.3. Aryloxyanthraquinones 278 7.3.2.4. Anthrapyridones and Anthrapyridines 283 7.3.2.5. Pyrazoloanthrones 284

Table of Contents

7.4.

7.5.

7.6. 7.7.

7.8.

7.3.3. Photochromism of Naphthacenequinones 7.3.3.1. Aryloxynaphthacenequinones 7.3.3.2. Naphthacenepyridones and Naphthacenepyridines . . . . 7.3.3.3. Pyrone 7.3.3.4. Pyrazolonaphthacenones 7.3.4. Photochromism of Phenoxypentacenequinone and Derivatives of Phthaloylpyrene Photochromic Behavior of Quinones 7.4.1. Spectral Characteristics 7.4.2. Kinetic Characteristics 7.4.2.1. Methylnaphthoquinone 7.4.2.2. Derivatives of Anthraquinone 7.4.2.3. Derivatives of Naphthacenequinone 7.4.3. Fatigue 7.4.3.1. Methylnaphthoquinone 7.4.3.2. Derivatives of Anthraquinone 7.4.3.3. Derivatives of Naphthacenequinone Applications of Photochromic Quinones 7.5.1. Recording and Multiplication of Images 7.5.2. Optical Memory 7.5.3. Gradation Masking Conclusion Examples of Synthesis of Photochromic Quinones 7.7.1. l-Phenoxy-2,4-dioxy and l-(p tert-butyl)phenoxy-2,4dioxyanthraquinones 7.7.2. 6-Phenoxy-5,12-naphthacenequinone 7.7.3. 6-Phenoxy-5,12-pentacenequinone 7.7.4. l,3-Dichloro-6-phenoxy-7,12-phthaloylpyrene References

xxi

285 285 288 288 288 289 291 291 298 298 299 302 304 304 304 306 307 308 308 309 309 310 310 310 310 310 311

8. Perimidinespirocyclohexadienones Vladimir Minkin, Vitaly Komissarov, and Vladimir Kharlanov 8.1. 8.2. 8.3. 8.4. 8.5. 8.6. 8.7.

Introduction Synthesis and Reactions Spectral and Photochromic Properties Thermal Decoloration Reaction Thermo- and Solvatochromism Integrated Photochromic and Electrochromic Properties Photoinitiated Interconversion of Ring-Chain Isomers of bis-Quinone Imines Derived from Aromatic Diamines 8.8. Preparative Procedures 8.8.1. 2,3-Dihydro-2-spiro-4'-(2',6'-dWert-butylcyclohexadien-2',5'one) perimidine, la (R = H)

315 317 323 328 329 332 334 337 337

XXÜ

Table of Contents

8.8.2. l-Methyl-2,3-dihydro-2-spiro-4'-(2',6'-di-?ert-butylcyclohexadien-2',5'-one) perimidine, la (R = CH3) 8.8.3. 2,3-Dihydro-2-spiro-4'-[(4//)-2',-ter/-butylnaphthalen-l'one]perimidine, 4 (R,R',RR" = H) 8.8.4. 5,7,9-Trimethyl-2,3-dihydro-2-spiro-4'-(2',6'-di-?ert-butylcyclohexadien-2',5'-one)-pyrido-[4,3,2-d,e]quinazoline, 9 (R' = H, R = Me, Ar=H) 8.9. References

338 338

338 339

9. Photochromism by Electron Transfer: Photochromic Viologens Masata Nanasawa 9.1. Introduction to Photochromism by Electron Transfer 9.2. Photochromism of Viologens 9.2.1. Introduction 9.2.2. General Synthetic Methods 9.2.3. Photochromic Behavior 9.2.3.1. Effect of Matrices on Photochromism 9.2.3.2. A Variety of Color Species of Viologens 9.2.3.3. Photochromism of Molecular Assembly 9.2.3.4. Viologen Bearing a Metal Complex as Counteranion 9.2.4. Applications 9.3. Photochromism of Thiazines 9.3.1. Introduction 9.3.2. Photochromic Properties 9.3.3. Applications 9.3.3.1. Thiazine Dyes 9.3.3.2. Effect of the Kind of Reductants 9.3.3.3. Effect of Coating Substrate 9.4. References

341 342 342 344 345 345 349 351

Index

371

354 358 362 362 362 364 364 365 365 367