organic compounds

title compound the C4—O4—C40—C41 torsion is antiperiplanar and the benzyl ring plane deviates significantly from that defined by plane O4/C40/C41, wit...

0 downloads 149 Views 304KB Size
organic compounds ˚ b = 9.1848 (2) A ˚ c = 23.2699 (5) A ˚3 V = 1397.30 (5) A Z=4

Acta Crystallographica Section E

Structure Reports Online

Mo K radiation  = 0.10 mm1 T = 293 K 0.25  0.12  0.05 mm

ISSN 1600-5368

Data collection

Methyl 4-O-benzyl-a-L-rhamnopyranoside Robert Pendrill,a Lars Erikssonb* and Go ¨ran Widmalma a

Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden, and bDepartment of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden Correspondence e-mail: [email protected]

9540 measured reflections 1665 independent reflections 1407 reflections with I > 2(I) Rint = 0.040

Oxford Diffraction Xcalibur 3 with sapphire 3 CCD diffractometer Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2004) Tmin = 0.921, Tmax = 1.000

Refinement R[F 2 > 2(F 2)] = 0.035 wR(F 2) = 0.081 S = 1.00 1665 reflections

177 parameters H-atom parameters constrained ˚ 3 max = 0.14 e A ˚ 3 min = 0.13 e A

Received 3 March 2014; accepted 9 April 2014

Table 1 ˚; Key indicators: single-crystal X-ray study; T = 293 K; mean (C–C) = 0.003 A R factor = 0.035; wR factor = 0.081; data-to-parameter ratio = 9.4.

In the title compound, C14H20O5, an intermediate in the synthesis of oligosaccharides, the glycosidic [H—C—O— C(H3)] torsion angle ’H is 52.3 and the exo-cyclic [H—C— O—C(H2)] torsion angle H is 11.7 . The hexapyranose ring has a chair conformation. In the crystal, molecules are linked by O—H  O hydrogen bonds, forming chains propagating along [010]. Enclosed within the chains are R33(12) ring motifs involving three molecules. The chains are linked via C—H   interactions, forming a three-dimensional network.

Related literature For a description of l-rhamnose as part of polysaccharides, see: Ansaruzzaman et al. (1996); Marie et al. (1998); Sa¨we´n et al. (2012). For a description of syntheses in which the title compound has been used, see: Eklund et al. (2005); Handa et al. (1979). For the structure of rhamnosyl-containing trisaccharides, see: Eriksson & Widmalm (2012); Eriksson et al. (1999); Jonsson et al. (2006). For further related literature on l-rhamnose, see: Anderson & Ijeh (1994); Varki et al. (1999); Haines (1969); Herget et al. (2008); Olsson et al. (2005). For puckering analysis, see: Cremer & Pople (1975).

Experimental Crystal data C14H20O5 Mr = 268.30 Acta Cryst. (2014). E70, o561–o562

Orthorhombic, P21 21 21 ˚ a = 6.5377 (1) A

˚ ,  ). Hydrogen-bond geometry (A Cg is the centroid of the C41–C46 benzyl ring. D—H  A

D—H

H  A

D  A

D—H  A

O2—H2A  O3i O3—H3A  O5ii C7—H7C  Cgiii

0.82 0.82 0.96

2.00 2.05 2.89

2.813 (2) 2.799 (2) 3.652 (3)

172 151 137

Symmetry codes: (i) x þ 12; y þ 32; z; (ii) x  1; y; z; (iii) x þ 2; y  12; z þ 12.

Data collection: CrysAlis CCD (Oxford Diffraction, 2004); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: enCIFer (Allen et al., 2004).

This work was supported by grants from the Swedish Research Council and the Knut and Alice Wallenberg foundation. Supporting information for this paper is available from the IUCr electronic archives (Reference: SU2708).

References Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Anderson, J. E. & Ijeh, A. I. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 1965– 1967. Ansaruzzaman, M., Albert, M. J., Holme, T., Jansson, P.-E., Rahman, M. M. & Widmalm, G. (1996). Eur. J. Biochem. 237, 786–791. Brandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Germany. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. Eklund, R., Lycknert, K., So¨derman, P. & Widmalm, G. (2005). J. Phys. Chem. B, 109, 19936–19945. Eriksson, L., So¨derman, P. & Widmalm, G. (1999). Acta Cryst. C55, 1736–1738. Eriksson, L. & Widmalm, G. (2012). Acta Cryst. E68, o2221–o2222. Haines, A. H. (1969). Carbohydr. Res. 10, 466–467. Handa, V. K., Piskorz, C. F., Barlow, J. J. & Matta, K. L. (1979). Carbohydr. Res. 74, C5–C7. Herget, S., Toukach, P. V., Ranzinger, R., Hull, W. E., Knirel, Y. A. & von der Lieth, C.-W. (2008). BMC Struct. Biol. 8, article No. 35 (pp. 1–20). Jonsson, K. H. M., Eriksson, L. & Widmalm, G. (2006). Acta Cryst. C62, o447– o449.

doi:10.1107/S1600536814007922

Pendrill et al.

o561

organic compounds Marie, C., Weintraub, A. & Widmalm, G. (1998). Eur. J. Biochem. 254, 378– 381. Olsson, U., Lycknert, K., Stenutz, R., Weintraub, A. & Widmalm, G. (2005). Carbohydr. Res. 340, 167–171. Oxford Diffraction (2004). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.

o562

Pendrill et al.



C14H20O5

¨ stervall, J., Landersjo¨, C., Edblad, M., Weintraub, A., Sa¨we´n, E., O Ansaruzzaman, M. & Widmalm, G. (2012). Carbohydr. Res. 348, 99–103. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Varki, A., Cummings, R., Esko, J., Freeze, H., Hart, G. & Marth, J. (1999). Editors. Essentials of Glycobiology. Cold Spring Harbor: Cold Spring Harbor Laboratory Press.

Acta Cryst. (2014). E70, o561–o562

supplementary materials

supplementary materials Acta Cryst. (2014). E70, o561–o562

[doi:10.1107/S1600536814007922]

Methyl 4-O-benzyl-α-L-rhamnopyranoside Robert Pendrill, Lars Eriksson and Göran Widmalm 1. Comment Bacteria contain many different sugar residues (Herget et al., 2008) in contrast to man where only a dozen monosaccharides are utilized in the formation of polysaccharides, glycoproteins and glycolipids [see Varki et al. (1999)]. In lipopolysaccharides L-rhamnose (6-deoxy-L-mannose) is often present as a sugar component, ranging from one residue per repeating unit, for example, as the terminal residue in the biosynthesized and polymerized oligosaccharide; consequently, it forms the side-chain residue in the O-antigen (Olsson et al., 2005), which often has 10 – 25 repeating units. Alternatively, L-rhamnose can make up the O-antigen polysaccharide per se, as a homopolymer (Ansaruzzaman et al., 1996). The title compound, Fig. 1, has been used in the synthesis of a rhamnosyl-containing trisaccharide (Eklund et al., 2005), the crystal structure of which was recently determined (Eriksson & Widmalm, 2012). The title monosaccharide is the methyl glycoside of α-L-rhamnopyranose and carries a benzyl protecting group at O4 in an ether linkage; the remaining two hydroxyl groups are unprotected and available for further synthetic modifications. The glycosidic torsion angle defined by H1-C1-O1-C7, φH is 52.3° (Fig. 1). The exo-cyclic torsion angle defined by H4 —C4—O4—C40, θH = -11.7°, shows an almost eclipsed conformation. The corresponding torsion angle in the crystal structure of 4-O-Benzyl-2,3-O-isopropylidene-α-L-rhamnopyranose was 36.8° (Eriksson et al., 1999). Moreover, in the title compound the C4—O4—C40—C41 torsion is antiperiplanar and the benzyl ring plane deviates significantly from that defined by plane O4/C40/C41, with a dihedral angle of 54.85 (18)°. The hexapyranose ring O5/C1-C5 has a chair conformation, with puckering parameters (Cremer & Pople, 1975) Q = 0.570 (2) Å, θ = 177.4 (2)° and φ = 11 (4)°. These puckering parameters reveal a 1C4 conformation close to the south pole, in contrast to another protected methyl α-L-rhamnopyranoside derivative carrying an isopropylidene group at O2 and O3 (Jonsson et al., 2006). In the crystal, molecules are linked via O—H···O hydrogen bonds, involving both hydroxyl groups, forming chains along the a axis (Table 1 and Fig. 2). They enclose 12-membered R33(12) ring motifs. There are also C—H ··· π interactions present, between the C7 methyl group and the centroid of the (C41–C46) benzyl ring (Table 1), that link the chains forming a three-dimensional network. The conformation of the exo-cyclic torsion angle (H4—C4—O4—C40) was analyzed by NMR measurements (see details in the archived CIF) of the long-range heteronuclear coupling constant between nuclei H4 and C40 using a JHMBC experiment, which resulted in 3JCH = 6.25 Hz. Interpretation of this coupling constant using the Karplus-type relationship 3JC,H = 7.6 cos2θ - 1.7 cosθ + 1.6 (Anderson & Ijeh, 1994) leads to |θH| = 26° when interpreted as a single conformation, i.e., quite similar to the structure determined in the solid state. The corresponding torsion angle in the crystal structure of 4-O-Benzyl-2,3-O-isopropylidene-α-L-rhamnopyranose was 36.8° (Eriksson et al., 1999).

Acta Cryst. (2014). E70, o561–o562

sup-1

supplementary materials 2. Experimental The synthesis of the title compound was performed according to a published procedure (Haines, 1969), where the rhamnosyl residue has the L absolute configuration. The title monosaccharide was crystallized at ambient temperature by slow evaporation from chloroform yielding colourless prismatic crystals. Spectroscopic data and details of the NMR measurements are given in the archived CIF. 3. Refinement The OH and C-bound atoms were positioned geometrically and allowed to ride on their parent atoms: O-H = 0.82 Å, C-H = 0.98, 0.96 and 0.92 Å, for CH, CH3, and CH(aromatic) H atoms, respectively, with Uiso(H) = 1.2Ueq(C) and = 1.5Ueq(O). In the final cycles of refinement, in the absence of significant anomalous scattering effects, Friedel pairs were merged and Δf " set to zero. The absolute configuration was set by the a priori knowledge of the absolute configuration of the starting reagent.

Figure 1 The molecular structure of the title molecule with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The long-range heteronuclear NMR coupling constant was measured beteen nuclei H4 (blue) and C40 (graphite).

Acta Cryst. (2014). E70, o561–o562

sup-2

supplementary materials

Figure 2 A partial view along the b axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1 for details). Methyl 4-O-benzyl-α-L-rhamnopyranoside Crystal data C14H20O5 Mr = 268.30 Orthorhombic, P212121 Hall symbol: P 2ac 2ab a = 6.5377 (1) Å b = 9.1848 (2) Å c = 23.2699 (5) Å V = 1397.30 (5) Å3 Z=4

Acta Cryst. (2014). E70, o561–o562

F(000) = 576 Dx = 1.275 Mg m−3 Mo Kα radiation, λ = 0.71073 Å Cell parameters from 4263 reflections θ = 3.8–32.2° µ = 0.10 mm−1 T = 293 K Prism, colourless 0.25 × 0.12 × 0.05 mm

sup-3

supplementary materials Data collection Oxford Diffraction Xcalibur 3 with sapphire 3 CCD diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator Detector resolution: 16.5467 pixels mm-1 ω scans at different φ Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2004)

Tmin = 0.921, Tmax = 1.000 9540 measured reflections 1665 independent reflections 1407 reflections with I > 2σ(I) Rint = 0.040 θmax = 26.4°, θmin = 3.8° h = −3→8 k = −11→11 l = −28→29

Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.035 wR(F2) = 0.081 S = 1.00 1665 reflections 177 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained w = 1/[σ2(Fo2) + (0.0524P)2] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max < 0.001 Δρmax = 0.14 e Å−3 Δρmin = −0.13 e Å−3 Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 Extinction coefficient: 0.013 (2)

Special details Experimental. Spectroscoptic data for the title compound: 1H NMR (CDCl3, ppm, 298K, selected 3JH,H values are given in parenthesis): H1 4.645(1.55); H2 3.903(3.49); H3 3.877(9.12); H4 3.333(9.52); H5 3.700(6.31); H6 1.352; H7 3.345; H40 4.738; H42,H46 7.355; H43,H45 7.360; H44 7.304; HO2 2.574(3.92); HO3 2.470(5.31). 13C NMR (CDCl3, ppm, 298K): C1 100.48; C2 71.20; C3 71.60; C4 81.77; C5 67.14; C6 18.14; C7 54.97; C40 75.11; C41 138.40; C42,C46 128.06; C43,C45 128.75; C44 128.12. NMR experiments were performed on a Bruker Avance III spectrometer operating at a 1H frequency of 700 MHz. The title compound was dissolved in chloroform-d and 1H and 13C resonances were referenced to internal TMS (δ = 0.0) and the solvent resonance (δ = 77.16), respectively. Resonance assignments were performed using standard experiments for oligosaccharides (Widmalm, G. (2007). NMR spectroscopy of carbohydrates and conformational analysis in solution. Comprehensive glycoscience, J. P. Kamerling, Ed., Elsevier, Oxford, Vol. 2, pp. 101–132) and measurement of the heteronuclear coupling constant was carried out by a J-HMBC experiment (Meissner, A. & Sørensen, O. W. (2001). Magn. Reson. Chem. 39, 49–52) using two separate experiments with κ values of 59.0 and 99.0, respectively (Jonsson, K. H. M., Pendrill, R. & Widmalm, G. (2011). Magn. Reson. Chem. 49, 117–124). Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

C1 H1 C2

x

y

z

Uiso*/Ueq

1.0867 (3) 1.1807 0.8931 (3)

0.5237 (2) 0.5419 0.6130 (2)

0.04789 (8) 0.0159 0.03845 (8)

0.0370 (5) 0.044* 0.0317 (5)

Acta Cryst. (2014). E70, o561–o562

sup-4

supplementary materials H2 C3 H3 C4 H4 C5 H5 O5 C6 H6A H6B H6C O1 C7 H7A H7B H7C O2 H2A O3 H3A O4 C40 H40A H40B C41 C42 H42 C43 H43 C44 H44 C45 H45 C46 H46

0.8232 0.7515 (3) 0.7109 0.8644 (3) 0.8990 1.0597 (3) 1.0212 1.1851 (2) 1.1946 (3) 1.3178 1.1234 1.2284 1.0298 (2) 1.1990 (5) 1.2799 1.1498 1.2813 0.9419 (2) 0.9920 0.5733 (2) 0.4761 0.7372 (2) 0.7222 (3) 0.6411 0.8573 0.6222 (3) 0.4478 (3) 0.3947 0.3531 (4) 0.2358 0.4302 (5) 0.3630 0.6085 (5) 0.6650 0.7013 (4) 0.8205

0.5790 0.5959 (2) 0.4935 0.6397 (2) 0.7435 0.5481 (2) 0.4456 0.56299 (17) 0.5915 (3) 0.5347 0.5747 0.6929 0.37637 (17) 0.2788 (3) 0.2985 0.1804 0.2918 0.76226 (15) 0.7768 0.68189 (16) 0.6461 0.60980 (15) 0.7259 (2) 0.8049 0.7630 0.6670 (2) 0.7314 (3) 0.8154 0.6700 (3) 0.7130 0.5471 (3) 0.5050 0.4856 (3) 0.4044 0.5455 (3) 0.5033

0.0037 0.09008 (8) 0.0933 0.14447 (8) 0.1432 0.15042 (8) 0.1549 0.09964 (6) 0.20013 (9) 0.1994 0.2356 0.1970 0.04700 (6) 0.04520 (14) 0.0117 0.0437 0.0790 0.03268 (6) 0.0009 0.08031 (6) 0.0975 0.19307 (5) 0.23403 (8) 0.2183 0.2430 0.28745 (8) 0.31025 (9) 0.2937 0.35777 (10) 0.3727 0.38299 (10) 0.4141 0.36203 (10) 0.3799 0.31468 (9) 0.3006

0.038* 0.0273 (4) 0.033* 0.0282 (4) 0.034* 0.0314 (4) 0.038* 0.0382 (4) 0.0444 (6) 0.067* 0.067* 0.067* 0.0458 (4) 0.0819 (10) 0.123* 0.123* 0.123* 0.0444 (4) 0.067* 0.0355 (3) 0.053* 0.0337 (3) 0.0380 (5) 0.046* 0.046* 0.0355 (5) 0.0424 (5) 0.051* 0.0563 (7) 0.068* 0.0601 (7) 0.072* 0.0594 (7) 0.071* 0.0471 (6) 0.057*

Atomic displacement parameters (Å2)

C1 C2 C3 C4 C5 O5 C6 O1 C7 O2

U11

U22

U33

U12

U13

U23

0.0251 (10) 0.0274 (9) 0.0220 (9) 0.0274 (9) 0.0263 (9) 0.0216 (6) 0.0342 (11) 0.0394 (8) 0.0693 (19) 0.0489 (9)

0.0573 (15) 0.0430 (12) 0.0325 (10) 0.0345 (11) 0.0400 (11) 0.0611 (9) 0.0628 (15) 0.0460 (9) 0.0734 (19) 0.0499 (10)

0.0288 (10) 0.0247 (9) 0.0275 (10) 0.0226 (9) 0.0277 (9) 0.0320 (7) 0.0362 (11) 0.0520 (9) 0.103 (2) 0.0344 (8)

−0.0006 (10) −0.0035 (10) −0.0004 (8) −0.0045 (8) −0.0027 (9) −0.0031 (7) −0.0018 (11) 0.0094 (8) 0.0371 (18) −0.0046 (8)

0.0027 (9) −0.0007 (8) −0.0010 (8) 0.0032 (8) −0.0010 (8) −0.0010 (6) −0.0118 (10) −0.0054 (8) −0.0094 (18) 0.0109 (7)

−0.0024 (9) 0.0023 (8) 0.0023 (8) 0.0023 (8) 0.0033 (9) 0.0002 (7) 0.0040 (10) −0.0125 (7) −0.0190 (18) 0.0105 (7)

Acta Cryst. (2014). E70, o561–o562

sup-5

supplementary materials O3 O4 C40 C41 C42 C43 C44 C45 C46

0.0228 (7) 0.0351 (7) 0.0469 (12) 0.0449 (11) 0.0451 (12) 0.0519 (14) 0.0819 (19) 0.097 (2) 0.0603 (15)

0.0481 (8) 0.0410 (8) 0.0375 (11) 0.0374 (12) 0.0494 (13) 0.0757 (18) 0.0642 (16) 0.0465 (14) 0.0441 (12)

0.0357 (8) 0.0250 (7) 0.0295 (10) 0.0244 (10) 0.0326 (11) 0.0414 (13) 0.0343 (12) 0.0349 (12) 0.0369 (11)

0.0034 (7) −0.0071 (7) −0.0021 (11) −0.0076 (10) −0.0021 (12) −0.0124 (14) −0.0272 (17) −0.0048 (15) 0.0019 (12)

0.0002 (6) 0.0058 (6) 0.0033 (10) −0.0002 (9) −0.0008 (10) 0.0130 (12) 0.0159 (13) 0.0069 (15) 0.0111 (11)

0.0070 (7) −0.0019 (6) −0.0013 (9) −0.0050 (8) −0.0062 (10) −0.0143 (13) −0.0018 (12) 0.0030 (10) −0.0007 (10)

Geometric parameters (Å, º) C1—O1 C1—O5 C1—C2 C1—H1 C2—O2 C2—C3 C2—H2 C3—O3 C3—C4 C3—H3 C4—O4 C4—C5 C4—H4 C5—O5 C5—C6 C5—H5 C6—H6A C6—H6B C6—H6C O1—C7

1.404 (3) 1.412 (2) 1.524 (3) 0.9800 1.414 (2) 1.525 (3) 0.9800 1.426 (2) 1.519 (2) 0.9800 1.431 (2) 1.535 (3) 0.9800 1.445 (2) 1.508 (3) 0.9800 0.9600 0.9600 0.9600 1.424 (3)

C7—H7A C7—H7B C7—H7C O2—H2A O3—H3A O4—C40 C40—C41 C40—H40A C40—H40B C41—C46 C41—C42 C42—C43 C42—H42 C43—C44 C43—H43 C44—C45 C44—H44 C45—C46 C45—H45 C46—H46

0.9600 0.9600 0.9600 0.8200 0.8200 1.433 (2) 1.505 (3) 0.9700 0.9700 1.383 (3) 1.390 (3) 1.387 (3) 0.9300 1.369 (4) 0.9300 1.384 (4) 0.9300 1.373 (3) 0.9300 0.9300

O1—C1—O5 O1—C1—C2 O5—C1—C2 O1—C1—H1 O5—C1—H1 C2—C1—H1 O2—C2—C1 O2—C2—C3 C1—C2—C3 O2—C2—H2 C1—C2—H2 C3—C2—H2 O3—C3—C4 O3—C3—C2 C4—C3—C2 O3—C3—H3 C4—C3—H3

112.30 (17) 107.24 (16) 111.33 (16) 108.6 108.6 108.6 110.35 (16) 108.14 (15) 109.60 (15) 109.6 109.6 109.6 112.53 (15) 108.27 (14) 109.53 (15) 108.8 108.8

H6B—C6—H6C C1—O1—C7 O1—C7—H7A O1—C7—H7B H7A—C7—H7B O1—C7—H7C H7A—C7—H7C H7B—C7—H7C C2—O2—H2A C3—O3—H3A C4—O4—C40 O4—C40—C41 O4—C40—H40A C41—C40—H40A O4—C40—H40B C41—C40—H40B H40A—C40—H40B

109.5 113.7 (2) 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 115.00 (14) 108.17 (15) 110.1 110.1 110.1 110.1 108.4

Acta Cryst. (2014). E70, o561–o562

sup-6

supplementary materials C2—C3—H3 O4—C4—C3 O4—C4—C5 C3—C4—C5 O4—C4—H4 C3—C4—H4 C5—C4—H4 O5—C5—C6 O5—C5—C4 C6—C5—C4 O5—C5—H5 C6—C5—H5 C4—C5—H5 C1—O5—C5 C5—C6—H6A C5—C6—H6B H6A—C6—H6B C5—C6—H6C H6A—C6—H6C

108.8 108.97 (13) 107.88 (14) 109.51 (15) 110.1 110.1 110.1 105.68 (15) 110.25 (15) 114.22 (17) 108.8 108.8 108.8 114.51 (14) 109.5 109.5 109.5 109.5 109.5

C46—C41—C42 C46—C41—C40 C42—C41—C40 C41—C42—C43 C41—C42—H42 C43—C42—H42 C44—C43—C42 C44—C43—H43 C42—C43—H43 C43—C44—C45 C43—C44—H44 C45—C44—H44 C46—C45—C44 C46—C45—H45 C44—C45—H45 C45—C46—C41 C45—C46—H46 C41—C46—H46

118.4 (2) 120.40 (19) 121.2 (2) 119.8 (2) 120.1 120.1 120.9 (2) 119.6 119.6 119.7 (2) 120.2 120.2 119.4 (3) 120.3 120.3 121.7 (2) 119.1 119.1

O1—C1—C2—O2 O5—C1—C2—O2 O1—C1—C2—C3 O5—C1—C2—C3 O2—C2—C3—O3 C1—C2—C3—O3 O2—C2—C3—C4 C1—C2—C3—C4 O3—C3—C4—O4 C2—C3—C4—O4 O3—C3—C4—C5 C2—C3—C4—C5 O4—C4—C5—O5 C3—C4—C5—O5 O4—C4—C5—C6 C3—C4—C5—C6 O1—C1—O5—C5 C2—C1—O5—C5 C6—C5—O5—C1

−173.76 (14) 63.0 (2) 67.3 (2) −55.9 (2) 58.98 (19) 179.27 (15) −64.05 (19) 56.2 (2) 65.15 (19) −174.41 (15) −177.09 (14) −56.64 (19) 174.32 (14) 55.90 (18) −66.9 (2) 174.69 (16) −62.6 (2) 57.6 (2) 178.65 (18)

C4—C5—O5—C1 O5—C1—O1—C7 C2—C1—O1—C7 C3—C4—O4—C40 C5—C4—O4—C40 C4—O4—C40—C41 O4—C40—C41—C46 O4—C40—C41—C42 C46—C41—C42—C43 C40—C41—C42—C43 C41—C42—C43—C44 C42—C43—C44—C45 C43—C44—C45—C46 C44—C45—C46—C41 C42—C41—C46—C45 C40—C41—C46—C45 C40—O4—C4—H4 C7—O1—C1—H1

−57.5 (2) −67.8 (2) 169.56 (19) −132.63 (17) 108.58 (18) −168.12 (15) 54.2 (2) −124.9 (2) −2.5 (3) 176.6 (2) 0.5 (3) 2.2 (4) −2.8 (4) 0.7 (4) 1.9 (3) −177.2 (2) −11.7 52.3

Hydrogen-bond geometry (Å, º) Cg is the centroid of the C41–C46 benzyl ring.

D—H···A

D—H

H···A

D···A

D—H···A

O2—H2A···O3i O3—H3A···O5ii C7—H7C···Cgiii

0.82 0.82 0.96

2.00 2.05 2.89

2.813 (2) 2.799 (2) 3.652 (3)

172 151 137

Symmetry codes: (i) x+1/2, −y+3/2, −z; (ii) x−1, y, z; (iii) −x+2, y−1/2, −z+1/2.

Acta Cryst. (2014). E70, o561–o562

sup-7