Inorganic and Hybrid Organic-Inorganic Materials for

Inorganic and Hybrid Organic-Inorganic Materials for Energy Saving LABORATORIO DI SINTESI DI MATERIALI INORGANICI Massimiliano D’Arienzo Barbara Di Cr...

0 downloads 77 Views 2MB Size
Inorganic and Hybrid Organic-Inorganic Materials

for Energy Saving 2 0

n m

LABORATORIO DI SINTESI DI MATERIALI INORGANICI

Massimiliano D’Arienzo Barbara Di Credico Roberto Scotti

2 0

n m

2 0

n m

0 .2

µ m

0 .2

µ m

5 0

n m

2 0

n m

5

n m

1 0

2 0 0

n m

2 0 0

n m

n m

Argomenti di tesi

Oxide nanomaterials for photocatalytic applications and gas sensing

Role of the Structure, Size and Morphology in

Upgrading the Functional Properties and the Technological applications of Oxide Materials

In collaboration with Pirelli Tyre

New nanofillers for rubber reinforcement in tires

Polymeric hybrid materials with dielectric properties 2

Struttura della tesi

Structural & Morphological characterization

• Functional properties

• Electronic and magnetic properties

Synthesis of the material Functional characterization

Oxide nanomaterials for Photocatalytic application and sensing

Synthesis

Characterizations XRD diffraction, SEM & TEM microscopy Surface area

Functional properties & Applications

Shape-controlled TiO2

Solvothermal synthesis

NOx abatement in air Organic pollutant in water

Sol-gel synthesis

New nanofillers for rubber reinforcement in tires

Synthesis In-situ and ex-situ synthesis (sol-gel, hydrothermal)

Characterizations

Applications

XRD diffraction, SEM and TEM microscopy

Stress-strain measurements Viscoelastic properties

•Synthesis of shape controlled silica NPs as filler for rubber reinforcement

IMMOBILIZED RUBBER

•Anysotropic filler for rubber reinforcement (Phyllosilicates) Rolling resistance Resistenza al rotolamento

NS-SilSepS9 HD-Silica Aderenza sul bagnato

Resistenza Abrasionall’abrasione resistance Abrasion resistance

Carbon Black

Wet Aderenza sulgrip bagnato

5 Aim: high-performance rubber composites

m

•Silica based nanofiller-latex composites for green tyres compounds Layered silicates in latex natural rubber

TEM

•Synthesis of ZnO decorated silica NPs as activator for rubber vulcanization c)

b)

ZnO curing additives

SiO2 100 nm

+

100 nm

e)

S8

f) d =0.26 nm

heating 5

2 0

n m

5

n m

n m

rubber

Polymeric hybrid materials with dielectric properties  Advanced “molecular” fillers for rubber reinforcement Nanocomposites enclosing PSQs with controlled cage-like or ladder-like structure and reactive functionalities (thiol or methacryl groups), which enable to modulate both the dielectric and the reinforcement properties of the composites

POSS/ladder-like nanounits with tailored structure and highly reactive functional groups (-SH or methacryl)

7

Other characterization techniques available Nitrogen Physisorption

TGA-MS

Thermal decomposition and weight loss

Determination of the specific surface area (BET) Pore size distribution (BJH) 40 35

0,0025 0,0020

3

-1

30

3

-1

Volume adsorbed STP (cm g )

-1

Pore volume / (cm g nm )

0,0030

25 20

0,0015 0,0010 0,0005 0,0000 0

15

10 20 Pore diameter / nm

30

10 5 0 0,0

0,2

0,4

0,6

Relative pressure (P/P0)

0,8

1,0

Proprietà elettroniche e magnetiche: Spettroscopia ESR TiO2

SnO2

TiO2 + h → e-CB + h+VB

Vo  Vo + e-

Ti4+ + e-CB → Ti3+

2 O2 + VO + e-  2 O2-

O2- + h+VB → OTi3+

O-

• The R=100%

A=39% R=61%

type, abundance and stability of the paramagnetic centers are relatable to photocatalytic efficacy and to the sensing properties

Vo

A=52% R=48%

A=80% R=20%

A=100%

Info about catalytic and

O2-

gain x 10

sensing mechanisms 3250

3300

3350

3400

3450

3500

3550

H(Gauss)

9