Institut für Elektrische Energiewandlung
Energy Converters Guide for Computer Aided Design - Asynchronous Machine -
Issue SS 2011-2012
Dipl.-Ing. Oliver Magdun, M.Sc. Nam Anh Dinh Ngoc Professor Dr.-Ing. habil. Dr.h.c. Andreas Binder
Energy Converters: CAD and System Dynamics
2
Asynchronous machines - design with PC-IMD
This guide is to facilitate the design of the asynchronous machine with the program PC-IMD. The design of the machine model from the lecture script “Energy Converters - CAD and System Dynamics” is presented. The input data, needed by the program, are bold printed indicated in the appropriate places (variable = value). In the program PC-IMD there are two important editors, where data have to be specified for the machine calculation. One of them is the template editor, where part of the geometric dimensions of the machine, calculation methods and further boundary conditions are chosen. The other one is the outline editor, where detailed geometric dimensions of stator, rotor and shaft are specified and also visualized with different view options. In the following the values that have to be specified in the template editor are printed as (TE: variable=value), while the values that have to be specified in the outline editor are printed as (OE: variable=value). Fig. 0 shows where to select the different editors.
Fig. 0: Screenshot PC-IMD menu bar – editor selection
Machine design: Given data: Asynchronous motor with squirrel-cage rotor (C-rotor) Rated power: P N = 500 kW Rated voltage: U N = 6 kV Rated frequency: fN = 50 Hz Number of poles: 2p = 4
(TE: Bar1 = Type2) (TE: PowrSh. = 500 000.0) (TE: Vs = 6000.0) (TE: Freq = 50.0) (TE: Poles = 4)
As the frequency and the power at shaft is given we choose the calculation method (TE: CalcMode=f/PowerSh) and (TE: TorqCalc = LR + Brk + NL) in the template editor. Aim is to design a machine with efficiency and a power factor as high as possible. By the design some conditions are to be kept: - Overload capability: 3 > M b /M N >1.6 - Starting current:
4 < I 1 /I N < 6
- Starting torque:
0,7 < M 1 /M N < 1.6
TU Darmstadt
(i.e. starting torque should not be too small, however not unnecessarily high) Institut für Elektrische Energiewandlung
Energy Converters: CAD and System Dynamics
3
Asynchronous machines - design with PC-IMD
- Winding temperature rise: ISO-Kl. B 1. Calculation of main design geometry data 1.1. Electromagnetic and thermal utilization A time-dependent temperature rise calculation is not carried out (TE: TempCalc = fixed). The ambient temperature is 20 °C (TE: Ambient = 20.0), stator and rotor temperature according to ISO-Kl. B 75 °C (TE: WdgTemp = 75.0; TE: RoTemp = 75.0). At the beginning of the design several parameters have to be estimated, respectively initial values for these parameters must be chosen, which could change during the design process. For simplification, given curves of optimised machines will be used during the design. From Fig. 2.1-3 to Fig. 2.1-10 (see [1]) the following initial values are extracted: Table 1: Initial values of the design
Notation Number of poles Efficiency Power factor Pole pitch Equivalent iron stack length Current loading Air gap flux density Current density Air gap width Inner rotor diameter and shaft radius
Value 2p = 4 N = 0,94 cos N = 0,868 p = 36 cm l e = 38 cm A s = 485 A/cm B ,av = 0,56 T ... 0,63 T J s = 5,5 A / mm2 = 0,14 cm d ri = 20 cm d rshaft rri ri 2
To insert as TE: Poles = 4
OE: Gap = 1.4 mm OE: RadSh = 100 mm
From the initial values (Table 1) we find: - Apparent power: PN 500 10 3 SN 610 kVA N cos N 0.944 0.868 - Motor current: SN 610 10 3 IN 59 A 3 U sN 3 6 10 3 - Synchronous speed: nsyn f s / p 1500 /min
-
Stator bore diameter:
d si 2 p p / π 458 mm.
Stator inner radius: rsi d si / 2 229 mm. Rotor outer radius: rro d si / 2 227.6 mm -
(OE: Rad1= 227.6 mm)
Internal apparent power for the stator stray coefficient s = 0.08/2 = 0.04 : S δ S /(1 s ) 610 10 3 / 1.04 587 kVA
TU Darmstadt
Institut für Elektrische Energiewandlung
Energy Converters: CAD and System Dynamics
-
4
Asynchronous machines - design with PC-IMD
587 10 3 Electromagnetic utilization: C S δ /(d l Fe nsyn ) 4.89 kVA.min/m3 2 0.458 0.38 1500 2 si
With the stator stray coefficient s = 0,04 and winding factor k ws = 0,91 estimated as initial values, the air gap flux density results: π2 k w1 A B C 2
2 C 2 4.89 10 3 60 0.954 T. B k w1 A π 2 π 2 0.91 500 100
and the average:
B ,av
2 2 B 0.954 0.6 T π π
Machines of this power class are equipped in axial direction with round cooling ducts. The lamination stack is divided into individual packages. According to [1] we will assume that both iron stacks, stator and rotor, consist of 9 sections with l 1 = 42 mm and 8 radial ducts (switch OE to axial view OE: NSDuct = 8 and OE: NRDuct = 8) with width l k = 10 mm (OE: WSDuct = 10 mm and OE: WRDuct = 10 mm). The iron stacks length results: l Fe 9 l1 9 42 378 mm. The total axial length will be extended in this case by the width of the cooling ducts: L 9 l1 8 l k 9 42 8 10 458 mm
(OE: Lstk = 458 mm)
The length of the winding extension at each end of iron stack must be determined and inserted into the program. In dependence of the voltage (Table 2.8.3-2 [1]) the following value will be considered: l a =5.7 cm (TE: Ext=57.0). 1.2. Design of the stator winding The stator slot pitch Qs changes with the number of coils per pole and phase q which is to be chosen. As q has an effect on the harmonic content of the winding it cannot be selected arbitrarily. The influence of q should be clarified within a table. The stator slot pitch consists of the tooth width b ds and the slot width b Qs . The tooth width may not be smaller than a minimum value for which the tooth flux density B ds becomes inadmissibly high. The minimum tooth width b ds,min is determined by linear calculation, without field flattening and for an iron fill factor of k Fe = 0,95 (OE: Stf = 0.95). π B , av 1 s 2 Qs bds, min Bds, max k Fe
The maximum tooth flux density is assumed to 2.4 T (higher value because it is calculated without flattening). Thus the maximal permissible slot width can be indicated and the distribution and pitching factors can be calculated (see Table 2) with expressions:
TU Darmstadt
Institut für Elektrische Energiewandlung
Energy Converters: CAD and System Dynamics
k d
sin 2m s ; q sin 2m s q
5
Asynchronous machines - design with PC-IMD
W m qs sin k p sin s 2 2 m q s p
Table 2: Choice of number of coils per pole and phase and short-pitching of the stator winding
Number of slots per pole and phase q: Number of stator slots Q s = 2 p m s q: Slot pitch Qs = p / (m s q) in cm: Tooth width b dsmin in cm: Slot width b Qs = s -b dsmin in cm: Ratio b Qs / Qs : Pole pitch in slots p : Distribution factor k d1 : Distribution factor k d5 : Distribution factor k d7 : Coil pitching with 1 Slot (s = 1): Pitching factor k p1 : Winding factor k w1 : Pitching factor k p5 : Winding factor k w5 : Pitching factor k p7 : Winding factor k w7 : Coil pitching with 2 Slots (s = 2): Pitching factor k p1 : Winding factor k w1 : Pitching factor k p5 : Winding factor k w5 : Pitching factor k p7 : Winding factor k w7 : Coil pitching with 3 Slots (s = 3): Pitching factor k p1 : Winding factor k w1 : Pitching factor k p5 : Winding factor k w5 : Pitching factor k p7 : Winding factor k w7 :
3 36 4,00 1.17 2.26 0,56 9 0,9598 0,2176 -0,1774 8 0,9848 0,9452 0,6428 0,1398 -0,3420 0,0607 7 0,9397 0,9019 -0,1736 -0,0378 0,7660 -0,1359 6 0,8660 0,8312 -0,8660 -0,1884 0,8660 -0,1536
4 48 3,00 1,31 1,17 0,56 12 0,9577 0,2053 -0,1576 11 0,9914 0,9495 0,7934 0,1629 -0,6088 0,0959 10 0,9659 0,9250 0,2588 0,0531 0,2588 -0,0408 9 0,9239 0,8848 -0,3827 -0,0786 0,9239 -0,1456
5 60 2,40 1,04 1,36 0,56 15 0,9567 0,2000 -0,1494 14 0,9945 0,9514 0,8660 0,1732 -0,7431 0,1111 13 0,9781 0,9358 0,5000 0,1000 -0,1045 0,0156 12 0,9511 0,9099 0,0000 0,0000 0,5878 -0,0878
6 72 2,00 0,87 1,13 0,56 18 0,9561 0,1972 -0,1453 17 0,9962 0,9525 0,9063 0,1787 -0,8192 0,1190 16 0,9848 0,9416 0,6428 0,1267 -0,3420 0,0497 15 0,9659 0,9236 0,2588 0,0510 0,2588 -0,0376
To insert as TE: CPP = 5 TE: Slots = 60
TE: Throw = 12
With the choice of q, we are trying to reduce the fifth harmonic wave amplitude of mmf. at an as small as possible value. From Table 2, it becomes evident that both q = 4 and q = 5 provide reasonable results and fulfil the conditions (see [1]): b Qs / Qs = 0.5 ... 0.6 and 1 cm < b Qs < 2 cm. Here q = 5 is selected with a short-pitching of s = 3. The winding diagram created by SPEED is W 12 presented in Fig.1 for the chosen case: q = 5 and . p 15 TU Darmstadt
Institut für Elektrische Energiewandlung
Energy Converters: CAD and System Dynamics
6
Asynchronous machines - design with PC-IMD
Fig. 1: Winding diagram created by SPEED (WdgType = Lap)
1.3. Choice of number of turns
The considered winding is a three-phase, double-layer winding (TE : Connex = 3-PhWye; TE: WdgType = Lap ; TE: CoilForm = None).
in
y-connection
The number of turns per phase is calculated as: Ns
Uh 2 πf s k w1 Φh
3330 2 π 50 0.91 83.12 10 3
198 turns /phase
where the estimated induced voltage per phase is: Uh
U N / 3 6000 / 3 3330 V 1s 1.04
and the main flux per pole of fundamental = 1 is for the air gap flux density B , 1 0.954 T : Φh
2 2 p le B , 1 0.36 0.38 0.954 83.12 mWb. π π
TU Darmstadt
Institut für Elektrische Energiewandlung
Energy Converters: CAD and System Dynamics
7
Asynchronous machines - design with PC-IMD
By a roughly assumption we have considered, for a preliminary estimation, the stator iron length equal to the equivalent iron length: l Fe le 380 mm. The number of turns per coil is: N c N s a /(2 pq) 198 1 /(2 2 5) 9.9 , so the integer value N c 10 (TE: TC = 10) for a = 1 (TE: Ppaths = 1) is chosen. The values for the number of turns per phase, flux, flux density and current loading are to be determined thereby again: Table 3: Corrected values
Number of turns per phase
N s 2 pqN c 200
Flux density
B 0,946 T Φˆ h 82.4 mWb 2ms N s I s A 491A/cm 2 p p
Air gap flux Current loading
The thermal utilization is A J 491 5.5 2700.5 (A/cm) (A mm²) which is a permissible value for a 500 kW induction machine (see [1]). Obs: Since the terminal voltage is an effective constant value, the air gap flux density depends on the number of turns per phase. If the air gap flux density is selected too small, the machine is poorly used and a larger number of turns per phase will be necessary in order to come to the given voltage. Possibly the necessary place is not available in the slot for this number of turns. If the flux density is selected too big, the iron will be strongly saturated and the magnetisation demand becomes too high!
1.4. Slot dimensions
The designed winding is a high-voltage winding. The slot flanks are parallel. The coils are inserted into the slot and then the conductor width must correspond to the slot opening. Because profile copper is used, rectangular conductors are specified in the winding parameters (TE: Wire_1=Rect). As can be seen from Table 2, for q = 5, the maximal permissible slot width is b Qs = 1.36 cm and the minimal calculate permissible slot is b Qs = 1.04 cm. The slot width is fixed here to b Qs = 1,25 cm and from this, further conductor dimensions and slot dimensions (Table 4 and Table 6) are determined according to the text script [1]. The initial value for the outer radius of the stator is with 50 mm much smaller than the already chosen radius of the rotor. In order to have a better overview of the change of the stator slots we set the outer radius of the stator arbitrarily to 400 mm (OE: Rad3 = 400). The final value of the stator outer radius will be later calculated. Table 4: Conductor and slot width dimensions
Slot geometry Slot width b Qs : Conductor insulation d ic : Slot-lining: Main insulation: Tolerance (slot play) b Tol : Insulation width b Is : Conductor width b L TU Darmstadt
Parallel flanks 12.5 mm 0.40 mm 0.15 mm 2.2 mm 0.3 mm 4.7 mm 7.1 mm
OE: S-Slots = PllSlot OE: SWid = 12.5
One-side One-side
TE: Liner = 0.15
2times slot-lining + 2times main ins. b L = b Qs - b Is - b Tol TE: wa_1 Institut für Elektrische Energiewandlung
Energy Converters: CAD and System Dynamics
8
Asynchronous machines - design with PC-IMD
=7.1 Conductor cross section is checked: ATL I s /( J s a ai ) 59 /(5.5 1 1) 10.73 mm2 and for bL 7.1 mm and for the smallest admissible area of the conductor ATL 12.42 mm2 (see Table 5) the conductor height hL 1.8 mm is chosen. Table 5: Selection of available profile copper wire: dimensions without enamel coating and cross section (edges of wire rounded by 0.5 mm .... 1.0 mm radius)
bL (mm) 5 5.6 6.3 7.1 8 9 10 11.2 12.5 14 16
1.8 8.637 9.717 10.98 12.42 14.04 15.84 17.64 19.80 22.14 24.84 -
2 9.637 10.84 12.24 13.84 15.64 17.64 19.64 22.04 24.64 27.64 31.64
2.24 10.84 12.18 13.75 15.54 17.56 19.80 22.04 24.73 27.64 31.00 35.48
2.5 11.95 13.45 15.20 17.20 19.45 21.95 24.45 27.45 30.70 34.45 39.45
Conductor height h L (mm) 2.8 3.15 13.45 15.20 15.13 17.09 17.09 19.30 19.33 21.82 21.85 24.65 24.65 27.80 27.45 30.95 30.81 34.73 34.45 38.83 38.65 43.55 44.25 49.85
3.55 17.22 19.33 21.82 24.66 27.85 31.40 34.95 39.21 43.83 49.15 56.25
4 21.54 24.34 27.54 31.14 35.14 39.14 43.94 49.14 55.14 63.14
4.5 27.49 31.09 35.14 39.64 44.14 49.54 55.39 62.14 71.14
5 34.64 39.14 44.14 49.14 55.14 61.64 69.14 79.14
The wire insulation thickness is set to 0.15 mm (TE: InsThk1 = 0.150).
Table 6: Conductor and slot height dimensions
Cond. height h L : Inter-turn insulation: Conductor insulation d ic : Coated coil: Main insulation Insulated coil upper layer: Two coils per slot Inter-layer insulation: Slot-lining (3 times): Wedge: Top and Bottom lining: Vertical play: Slot height h Qs : Stator tang depth h 4s
1,80 mm 0.3 mm 0.4 mm 24.7 mm 4.4 mm 29.1 mm 58.2 mm 4,0 mm 0,45 mm 4,5 mm 0.8 mm 1.05 mm 69,0 mm 0 mm
TE: wb_1=1.80
N c (h L +d ic ) + (N c -1) inter-turn ins.
TE: SD_S = 69.0 TE: TGD_S = 0.001*
(*Speed Software cannot handle h 4s = 0, therefore a small value is inserted)
The magnetic circuit computation assumes parallel-sided stator teeth. Simplified calculation takes H d on 1/3 of tooth length at the narrower side to calculate the mmf. Then:
Qs ,1 / 3 (d si (2 / 3) lds ) π / Qs (458 (2 / 3) 69) π / 60 26.38 mm bds ,1 / 3 Qs ,1 / 3 bQs 26.38 12.5 13.9 mm TU Darmstadt
Institut für Elektrische Energiewandlung
Energy Converters: CAD and System Dynamics
9
Asynchronous machines - design with PC-IMD
1.5. Determination of the rotor winding parameters of the squirrel-cage rotor
Choice of rotor slot number Q r must be done with respect to stator number Q s . (see Lectures: “Motor development for electric drive systems”). We get as choice the slot numbers from Table 7. Table 7: Choice of rotor slot number Q r
According to the script for and number of pole pairs the following rotor slot numbers Q r Are permitted for unskewed rotor bars: Selected number of rotor slots:
Q s = 60 stator slots p=2 50, 54, 66, 70 Q r = 50 rotor slots
TE: Skew = 0 TE: R_Bars = 50
Rotor cage is designed according to rotor bar current: 2k m N 2 0.91 3 200 I r I r / ü I I s cos s 59 0.868 51.21 A, ü I ws s s 21.84 Qr 50 I r ü I I r 21.84 51.33 1118 A
The rotor bar current density results: J r I r / ACu 1118 / 200 5.6 A/mm Deep bar rotor to increase starting torque should respect the ratio h Cu /b Cu 8. Then: h Cu = 40 mm and b Cu = 5 mm with the cross section: A Cu = 200 mm2 . The necessary ring cross section: ARing I Ring / J Ring 4462 / 5.6 798 A/mm2 Where: - Rotor ring current: I Ring I r /(2 sin( pπ / Qr )) 1121 /(2 sin(2 / 50)) 4462 A - Ring current density: J Ring J r 5.6 A/mm2, Table 8. Rotor cage dimensions
Conductor dimensions: Winding factor k wr : Choice of bar height and bar width: Bar height h Cu : Bar width b Cu : Set-back h 4r : Rotor slot opening s Qr Ring height and axial width: Ring height h Ring Additional radial ring height: TU Darmstadt
1 by cage windings 40 mm 5 mm 3.5 mm acc. To text script [1] 2.5 mm 40 mm Ring height is usually at least bar height: h Ring > h Cu 0 mm h z = h Ring - h Cu
OE: BarDpth = 40 OE: BarWdth = 5 OE: SetBack = 3.5 mm
OE: SO_R = 2.5 mm
OE: ERLedge1 = 0 OE: ERLedge2 = 0
Institut für Elektrische Energiewandlung
Energy Converters: CAD and System Dynamics
Ring width b Ring :
10
Asynchronous machines - design with PC-IMD
20 mm
OE: Erthk1 = 20 OE: Erthk2 = 20 The set-backs in the rotor are not filled with copper, therefore (TE: SBFull = false). As copper is used as rotor bars, the cage- and end-ring density is set to the one of copper which is 8900 kg/m³ (TE: CgDensity = 8900 kg/m³) (TE: ERDensity = 8900 kg/m³). 1.6. Yoke radii
The permissible flux density B y 1,7I1.8 T determines the thickness of the stator and rotor back. For stator: hys
Φ (1 s ) / 2 82.4 10 3 (1 0.04) / 2 70 mm, 0.378 0.95 1.8 l Fe k Fe Bys
value which can be increased according to motor performances. Let’s accept: h ys = 77 mm. Recalculate value of stator maximum flux density: Bys
Φ (1 s ) / 2 1.54 T hys l Fe k Fe
The stator outer diameter results: d so d si 2lds 2hys 458 2 69 2 77 750 mm
(OE: Rad3= 375 mm)
Without flux penetration in shaft, the rotor height back is: hyr d si 2 2ldr d ri / 2 458 2 1.4 2 43.5 200/ 2 84.1 mm For axial cooling four ducts with a diameter of c 2 = 30 mm it results: hyr,e hyr (2 / 3) c2 84.1 2 / 3 30 64.1 mm
(OE: NumHoles = 4) (OE: HoleDia=30 mm)
The radius for the circle, on which the axial cooling ducts lie (pitch circle), is is set to 286.5 mm (OE: PCDia = 286.5 mm).
Rotor maximum yoke flux density is: Byr
(2 / π) B , 1 p le / 2 Φ / 2 1.85 T hyr,e l Fe k Fe hyr,e l Fe k Fe
In the reality this value will be much smaller due to the shaft presence (see [1]) and a round cooling duct with c 2 = 30 mm may be accepted. Now all values for the calculation of the machine with the PC-IMD program are available! In Fig.2 the geometry of the induction machine is given, as it has been generated by SPEED, with details of the stator and rotor slots.
TU Darmstadt
Institut für Elektrische Energiewandlung
Energy Converters: CAD and System Dynamics
11
Asynchronous machines - design with PC-IMD
Fig. 2 Geometry of 500kW induction machine
1.7 Setting of calculation methods
Before performing the calculation several calculation method settings for simulation have to be set. Table 9: Calculation method settings
Method of calculating X diff SPEED End-winding leakage reactance calculation method: Richter Method of calculating deep-bar factors Classical Component of (rotor side) Carter factor Method for calculating iron losses
SPEED
TE: DiffLeak = SPEED TE: EndLeak = RICHTER TE: DeepBar = Classical TE: qC_R = 1 (for semi-closed slots) TE: WFeCalc: SPEED
2. Numerical computation of machine performances
For a better understanding, all the values, which are necessary for the input into the program, are again presented in Fig. 3 to 5. The calculated values for power factor (P.F.), torque (TorqSh), current densities (Jrms, Jrotor) etc., are located in design sheets. Beside the specification of a desired power (the program calculates then the associated slip) it is also possible to perform calculations for a given slip value. For this the parameter CalcMode (Figure1, Control Parameters) must be changed of f/PowerSh on f/slip and the appropriate slip (Slip) to be entered. Thus starting current / rated current ratios can be determined. The ratio pull-out torque / rated torque (TBrkpu) can be directly read! Are all values within the demanded range, the recalculation of the design with the values supplied by the program is to be performed. TU Darmstadt
Institut für Elektrische Energiewandlung
Energy Converters: CAD and System Dynamics
12
Asynchronous machines - design with PC-IMD
Fig. 3: Template Editor: Main specifications
Fig. 4: Template Editor: Winding settings
TU Darmstadt
Institut für Elektrische Energiewandlung
Energy Converters: CAD and System Dynamics
13
Asynchronous machines - design with PC-IMD
Fig. 5: Template editor: Rotor settings
Fig. 6: Template editor: Loss calculation settings
TU Darmstadt
Institut für Elektrische Energiewandlung
Energy Converters: CAD and System Dynamics
14
Asynchronous machines - design with PC-IMD
Fig. 7: Template editor: Thermal calculation settings
TU Darmstadt
Institut für Elektrische Energiewandlung
Energy Converters: CAD and System Dynamics
15
Asynchronous machines - design with PC-IMD
Fig. 8: Template editor: Calculation method settings
TU Darmstadt
Institut für Elektrische Energiewandlung
Energy Converters: CAD and System Dynamics
16
Asynchronous machines - design with PC-IMD
Make sure that the correct material curves are loaded:
After all settings were made, start the calculation by clicking on Steady State analysis:
Finally see the calculation results in the Design sheet:
TU Darmstadt
Institut für Elektrische Energiewandlung
Energy Converters: CAD and System Dynamics
17
Asynchronous machines - design with PC-IMD
PC-IMD 4.1 (4.1.1.26) 26-Sep-2011 15:55:15 TU Darmstadt IEE PC-IMD Design sheet 1 Dimensions : ----------------------------------------------------------------Slots StatorOD StatorID
60 750.0000 mm 458.0000 mm
Poles RotorOD RotorID
4 455.2000 mm 200.0000 mm
Lstk Gap MConfig
STATOR.. Rad3 S-slot SD_S STOH NSDuct SWedge
375.0000 mm PllSlot 69.0000 mm 0.0000 mm 8 NonMag
R1g ASlot SWid SBWid WSDuct muWedge
229.0000 863.5539 12.5000 12.5000 10.0000 1.0000
mm mm^2 mm mm mm
ASlotLL TGD_S SYoke LFeS
ROTOR.. Rad1 Bar1 Skew ARslot muPlug Rotor slot BarDpth SetBack Dbar
227.6000 mm Type2 0.0000 SSlots 208.7557 mm^2 1.0000 dimensions.. 40.0000 mm 3.5000 mm 411.6966 mm
Rad0 R_Bars LB Abar SBFull
0.0000 mm 50 458.0000 mm 200.0000 mm^2 false
RadSh DblCage BarExt Shrink RYoke
Rotor end-rings and ERType1 Type C ERType2 Type C ERLedge1 0.0000 ERLedge2 0.0000 ERArea1 800.0697 NRDuct 8 ROH 0.0000 Shaft.. RadSh AxExSh1
BarWdth
5.0000 mm
SO_R
458.0000 mm 1.4000 mm Int
839.0786 1.0000E-03 77.0000 359.1000
mm^2 mm mm mm
100.0000 mm false 0.0000 mm 0.0000 84.0966 mm 2.5000 mm
fins..
mm mm mm^2 mm
ERthk1 ERthk2 ERArea2 WRDuct LFeR
100.0000 mm 0.0000 mm
RadSh2 AxExSh2
4.8000 mm 0.0000 mm
XStf_R
1.0000
Stacking factors.. Stf 0.9500
20.0000 20.0000 800.0697 10.0000 359.1000
mm mm mm^2 mm mm
ERID1 ERID2 EROD
RadSh3 AxExSh3
368.1931 mm 368.1931 mm 448.2001 mm
3.6000 mm 0.0000 mm
2 Winding Data : --------------------------------------------------------------General Connex PC SFill MaxSFg ACL PCSlot EndFill Ax1md
3-Ph Wye 100.0000 %Cu 0.2960 0.2960 69006.2284 mm^2 1.8401 0.5000 54.0000 mDeg
Stator winding.. WdgType Lap Throw 12 Tph 200.0000 MLT 2186.8835 mm Wire_1 Rect TU Darmstadt
TCC SFillHBL MaxSFn LCL XPCslot LaxPack Ax2md
T_wdg CPP PPaths XET
0.3930 0.4716 0.4716 150.6686 1.0000 712.0051 114.0000
%/°C
mm
WireDens ACu ASlotLL Liner
mm mDeg
LAYERS Ax3md
2.0000 174.0000 mDeg
RLL_Amb TC Tph1 Ext
1.1800 ohm 10 181.9708 57.0000 mm
75.0000 °C 5.0000 1 1.0000
8900.0000 255.6000 839.0786 0.1500
kg/m³ mm^2 mm^2 mm
Institut für Elektrische Energiewandlung
Energy Converters: CAD and System Dynamics
18
wa_1 wb_1 NSH_1 BWDia_1 BWArea_1 InsThk_1 HBWDia_1
40.3386 4.0339 mm 12.7800 mm^2
7.1000 1.8000 1 4.0339 12.7800 0.1500 4.4482
Asynchronous machines - design with PC-IMD
mm mm mm mm^2 mm mm
EWG EWDia ACond
Winding factors.. kw1 0.9099 kw7 -0.0878 kw13 -0.0601 kw19 0.1041 ks1 1.0000
kw3 kw9 kw15 kw21 kr_RS
-0.3804 0.2351 0.0000 -0.2351 7947.2112
kw5 kw11 kw17 kw23 zSlot
Rotor cage CgDens 8900.0000 kg/m³ PC1 100.0000 %Cu PCEndR 100.0000 %Cu Kring1 0.9619 PRSlot 4.1267
ERDens TCC1 TCCEndR Kring2 XPRslot
8900.0000 kg/m³ 0.3750 %/°C 0.3750 %/°C 0.9619 1.0000
SBFull RhoBar RhoEndR
0.0000 -0.1041 0.0601 0.0878 20
false 2.0796E-08 ohm-m 2.0796E-08 ohm-m
3 Control Data : -------------------------------------------------------------CalcMode Freq rpmS Vs
f/PowerSh 50.0000 Hz 1500.0000 rpm 6000.0000 V
PowrSh.. 5.0000E+05 W rpm 1486.6834 rpm Drive AC_Volts
Slip
0.0089 p.u.
4 Magnetic design : ----------------------------------------------------------SSteel RSteel ShSteel MagCalc XBsy
WWN 230-50 WWN 230-50 Luft Classical 1.0000
PPitch qC_S kC_s kC_sd muPlug Bstpk Brtpk Bsypk Brypk Bshpk Bg1L Bgm
359.7124 0.0000 1.5018 1.1307 1.0000 2.0330 1.3280 1.4496 1.3273 0.0000 0.7643 0.4866
XBst XBry mm
T T T T T T T
Ag qC_R kC_r kC_rd PCplug ATst Atrt ATsy ATry ATsh ATgap Bgpk
1.0000 1.0000 0.0000 1.0000 1.0372 1.1307 1.4000 733.9806 35.2505 95.8747 28.1934 0.0000 1695.8217 0.7643
mm^2
A A A A A A T
XBrt XBsh IncShaft Lge XkC kC
MMFst MMFrt MMFsy MMFry MMFsh kXm Phi1L
1.0000 1.0000 No shaft 2.7881 mm 1.0000 1.9915
0.4328 0.0208 0.0565 0.0166 0.0000 1.5268 80.1649
p.u. p.u. p.u. p.u. p.u. mWb
5 Equivalent circuit parameters : --------------------------------------------R1 R2 Rc Rbar R_rotor EQcct DeepBar
0.7175 0.5418 9207.5856 0.3791 6.8174E-05 SPEED Classical
EndLeak
Richter
DiffLeak LkSat TU Darmstadt
SPEED None
ohm ohm ohm ohm ohm
X1 6.6658 X2 6.4149 Xm0 234.8003 REndRing 0.1627 X_rotor 8.0719E-04 RcLoc GapFlux K_r 1.0016 XKr_DB 1.0000 CoilFill 1.0000 XX1end 1.0000 NHDiff 1000 kXL1 1.0000
ohm ohm ohm ohm ohm
X1unsat X2unsat Xm Erb XErb K_x XKx_DB kEndCoil XX2end DiffSat kXL2
6.6658 6.4149 158.3289 0.0000 1.0000
ohm ohm ohm V
0.9996 1.0000 1.0000 1.0000 false 1.0000
Institut für Elektrische Energiewandlung
Energy Converters: CAD and System Dynamics kzz Xkzz XXm
1.0000 1.0000 1.0000
kX1slot XkX1slot XXL1
Unsaturated reactance components.. X1slot 1.8672 ohm X1end X2slot 4.8918 ohm X2end L-circuit parameters.. alpha_TL 1.0405 XL_L 13.8811 ohm R2_L 0.5866 ohm
uX1oX2 Rc_L Xm_L
19
Asynchronous machines - design with PC-IMD
1.0000 1.0000 1.0000
kX2slot XkX2slot XXL2
1.0000 1.0000 1.0000
4.5180 ohm 1.2782 ohm
X1diff X2diff
0.2806 ohm 0.2448 ohm
X1oX2
1.0391
1.0000 9968.8143 ohm 164.7438 ohm
6 Performance : --------------------------------------------------------------OpMode Motoring Vt 6000.0000 V Pshaft 4.9997E+05 W PshaftHP 670.4711 h.p. Currents.. Iph1 Imc
58.6643 A rms 20.4703 A
rpm PElec P.F. WTotal IL1 IMag
Equivalent circuit voltages.. E1 3240.5650 V VR1 ER2 3194.1983 V VR2 Losses and related parameters.. WCuS 7408.3039 W WCuR SLLCalc ANSIC50 WSLL Jrms 4.5903 A/mm^2 JBar1 5.7658 A/mm^2 J_ER Other performance parameters.. PGap 5.1058E+05 W EMTorque Locked-rotor.. TLR 3219.1352 ILR 343.5242 PLR 7.1454E+05 pTWdg 3.6533 C_Cu 57.1755 T_wdg_S 20.0000 XXL1s 1.0000
Nm A W C/sec kJ/C °C
Breakdown.. TBrk 7958.7126 IBrk 187.9838 rpmBrk 1445.6086 T_wdg_B 20.0000 XXL1b 1.0000
Nm A rpm °C
TLRpu ILRpu pTBar C_cage T_rtr_S XXL2s
TBrkpu IBrkpu PBrk T_rtr_B XXL2b
1486.6834 rpm 5.2140E+05 W 0.8552 21435.0875 W 58.6643 A rms 20.4673 A
I2 Ic
42.0943 V 28.6113 V
VX1 VX2
4532.7666 W 6072.5137 W
WIron Wwf
5.7499 A/mm^2 JRotor
0.0089 3211.4200 95.8893 82.0084
p.u. Nm % %
52.8085 A 0.3519 A
391.0422 V 338.7613 V
3421.5033 W 0.0000 W 5.7329 A/mm^2
3250.4251 Nm
1.0024 5.8558 9.5613 C/sec 52.8862 kJ/C 20.0000 °C 1.0000
2.4783 3.2044 1.3302E+06 W 20.0000 °C 1.0000
No-load.. INL 22.0592 A INLpu 0.3760 T_wdg_NL 20.0000 °C PNL 4418.0537 W
NLTorque TNLpu T_rtr_NL XLL_NL
0.0000 Nm 0.0000 20.0000 °C 314.0145 ohm
Test data.. Wrated 0.0000 W V_Test 6000.0000 V s_Test 0.0000
Irated I_Test T1_Test
0.0000 A 0.0000 A 20.0000 °C
TU Darmstadt
Slip Tshaft Effcy Eff_X_PF
sLR PFLR
1.0000 p.u. 0.2002
XErbs
1.0000
sBrk PFBrk
0.0363 p.u. 0.6809
sBrkType XErbb
Search 1.0000
NLPF NLrpm rpmNL INLX1
P_Test T2_Test
0.0193 1500.0000 rpm 1500.0000 rpm true
0.0000 W 20.0000 °C
Institut für Elektrische Energiewandlung
Energy Converters: CAD and System Dynamics
20
Asynchronous machines - design with PC-IMD
7 Core losses, Harmonic losses, and Stray Load Losses : ----------------------WFe0S WFeS Wst Wsy WstWkg WFeR Wrt Wry WrtWkg WFeCalc
3.5086 3414.1815 1702.4924 1711.6891 6.0128 7.3218 2.7773 4.5445 0.0190 SPEED
W/kg W W W W/kg W W W W/kg
WFe0R WFeSe Wste Wsye WsyWkg WFeRe Wrte Wrye WryWkg XFe
3.5086 884.0935 457.9210 426.1726 3.3026 0.0209 0.0079 0.0130 0.0190 1.0000
W/kg W W W W/kg W W W W/kg
WFe0Sh WFeSh Wsth Wsyh
3.6719 2530.0879 1244.5715 1285.5165
W/kg W W W
WFeRh Wrth Wryh
7.3009 W 2.7694 W 4.5315 W
Bd_slot
0.5951 T
8 Thermal data : -------------------------------------------------------------TempCalc Ambient T_wdg
Fixed 20.0000 °C 75.0000 °C
HeatFlux T_rtr
7.7389 kW/m²
TempRise
55.0000 °C
75.0000 °C
9 Miscellaneous parameters : -------------------------------------------------Wt_Cu 149.2443 kg WtFeS 717.0246 kg WtFesy 518.2904 kg Wt_Al 59.0248 kg WtShaft 183.7832 kg RotJ 13.9842 kg-m² C_cage 52.8862 kJ/C WtFrame 54.0323 kg Ecc 0.0000 FrThk 10.0000 mm FrLgthM Actual TRV 43086.1054 Nm/m3 Wf0 0.0000 W CanStyle None NumHoles 4 RTC_OC 2.0256 sec
Wt_Fe WtFeR WtFest WtAl_RB
1092.8759 375.8514 198.7318 40.7620
JL C_main WtCap UMP LFrame FrLgth T/Wt RPM0
0.0000 57.1755 2.8416 2.0010E-13 750.0000 750.0000 2.4681 1500.0000
PCDia RTC_SC
kg kg kg kg
Wt_Tot
p.u. kJ/C kg kg mm mm Nm/kg rpm
JFan
0.0000 p.u.
CapThk
5.0000 mm
286.5000 mm 0.1083 sec
WtTri WtAl_ER
P/Wt NWFT HoleDia
1301.1450 kg 84.4109 kg 18.2628 kg
384.2541 W/kg 1.0000 30.0000 mm
End of Design sheet------------------------------------------------------------
3. Speed – exercise
1) The number of turns per coil will be decreased from 10 to 9. Decreasing the number of turns per coil allows increasing the cross-section of cupper (h L from 1.8 mm to 2 mm). Calculate the new motor impedances, the starting current and the starting torque! Do the motor impedances change? How do starting torque and current vary in comparison to the initial data? 2) How do the air-gap induction, the primary current at rated slip and the electric loading change?
References: [1] A.Binder, Energy Converters: CAD and System Dynamics, Text book – TU Darmstadt, 2009 [2] A.Binder, CAD and System Dynamics of Electrical Machines, Text book – TU Darmstadt, 2006 ÷ 2008 [3] A.Binder, Motor Development for Electric Drive Systems, Text book – TU Darmstadt, 2006 ÷ 2009 [4] A.Binder, CAD and System Dynamics of Electrical Machines, Tutorial for Exercise– TU Darmstadt, 2006- 2008 [5] A.Binder, Energy Converters: CAD and System Dynamics, Tutorial for Exercise – TU Darmstadt, 2009 [6] ****, User’s Manual for PC-IMD 2.5, University of Glasgow, 1998 [7] A.Binder, M. Aoulkadi, CAD and System Dynamics of Electrical Machines: Design of an Asynchronous Machine, Tutorial for Exercise, 2006 [8] O.Magdun, A.Binder, Energy Converters - Asynchronous Machine, Guide for Computer Aided Design, 2009 TU Darmstadt
Institut für Elektrische Energiewandlung
Energy Converters: CAD and System Dynamics
21
Asynchronous machines - design with PC-IMD
Abbreviations PC-IMD Symbol hr
mm
Rotorbar depth
Leiterhöhe des Rotorstabes
BarWdth
br
mm
Rotorbar width
Leiterbreite des Rotorstabes
ERLedge
mm
Additional endring length
Zusätzliche radiale Endringlänge
Erthk
mm
Endring thickness
Endringdicke (1=linker, 2=rechter)
Gap
mm
Airgap length
Luftspaltweite
Lstk
l
mm
Rotor and Stator stack length
Blechpaketlänge
Poles
p
-
Number of Poles
Polzahl
mm
Shaft radius
Radius der Welle
Dimensional
R-Bars
Qr
-
Number of rotor bars or slots
Rotornutzahl
SD-S
hS
mm
Stator slot depth
Statornuttiefe
mm
Set-Back
Rotorstreusteghöhe
SetBack Skew
k sq
-
Rotor skew
Schrägung des Rotors um x – Nuten
Slots
Qs
-
Number of stator slots
Statornutzahl
SO-R
mm
Rotor slot opening
Nutöffnung Rotor
SO-S
mm
Stator slot opening
Nutöffnung Stator
S-slot
-
Shape of Stator slot bottom
Statornutform
-
Stacking factor
Stapelfaktor
TGD-R
mm
Rotor tang depth
Streusteghöhe Rotor
TGD-S
mm
Stator tang depth
Streusteghöhe Stator
mm
Stator tooth width
Statorzahnbreite
-
Winding connection
Anschlussart
-
Number of coils per pole
Nuten je Pol und Strang
Ext
mm
Winding extension at each end
Gerader Leiter außerhalb Eisen
LAYERS
-
Number of layers
Anzahl der Spulenlagen pro Nut
Liner
mm
Thickness of stator slot-liner
Dicke der Nutauskleidung
Stf
TW-S
k Fe
b ds
Connex Coils/P
Winding
Denotation
BarDpth
RadSh
q
NSH
b
-
No. of strands in hand
Anzahl der parallelen Teilleiter
PPaths
a
-
No. of parallel paths
Anzahl der parallelen Zweige
TC
Nc
-
Turns per coil
Spulenwindungszahl
Throw
y
-
Throw
Spulenweite
WdgTemp
°C
Winding temperature
Wicklungstemperatur
WdgType
-
Type of winding
Wicklungsart
Wire
mm
Wire size or gauge
Leiterdurchmesser
Freq Control
Unit
rpm
f n
Hz
Fundamental line frequency
Speisefrequenz
min
-1
Actual shaft speed
Drehzahl
-1
Synchronous speed
Synchrondrehzahl
rpmS
nS
min
Slip
s
-
Slip
Schlupf
Vs
U
V
RMS AC line voltage
Spannung
TU Darmstadt
Institut für Elektrische Energiewandlung
Equivalent
Magnetic
Energy Converters: CAD and System Dynamics
Performance Core Loss Miscellaneous
Asynchronous machines - design with PC-IMD
Bg1L
B 1
T
Peak fundamental flux-density
Maximalwert Luftspaltflussdichte
Bgm
B av
T
Mean airgap flux-density
Mittlere Luftspalt Flussdichte
Bstpk
B ds
T
Peak Stator tooth flux-density
Statorzahn Flussdichte
Brtpk
B dr
T
Peak rotor tooth flux-density
Rotorzahn Flussdichte
Bsypk
B ys
T
Peak stator yoke flux-density
Statorrücken Flussdichte
Brypk
B yr
T
Peak rotor yoke flux-density
Rotorrücken Flussdichte
Bshpk
Bs
T
Peak shaft flux-density
Rotorwelle Flussdichte
KC_s
k Cs
-
Carter coefficient for stator slot
CARTER-Faktor
R1
Rs
Primary resistance/phase
Statorwiderstand
R2
Rr
Secondary resistance/phase
Rotorwiderstand
X1
X s
Primary stray reactance
Statorstreureaktanz
X2
X r
Secondary stray reactance
Rotorstreureaktanz
Xm
X hges
Saturated magnetising reactance
Hauptreaktanz (gesättigt)
Xm0
X hung
Unsaturated magnetising
Hauptreaktanz (ungesättigt)
Effcy
%
Efficiency
Wirkungsgrad
IL1
I
A
RMS line current
Statorstrom
I2
I
A
Rotor current
Rotorstrom
Imag
Im
A
Jrms
Thermal
22
J
Magnetising current
Magnetisierungsstrom
2
RMS current-density main wind.
Statorstromdichte
2
A/mm
Jbar1
J
A/mm
RMS current-density rotor cage
Rotorstabstromdichte
P.F.
cos
-
Power factor
Leistungsfaktor cos
Pelec
Pe
W
Mean electrical power
Elektrische Leistung
PowerSh
Pm
W
Shaft power
Mech. Leistung
TbrkR
mb
-
Ratio Breakdown/rated Torque
Verhältnis Kipp-/Nennmoment
WcuR
P Cur
W
Rotor copper losses
Kupferverluste Rotor
WcuS
P Cus
W
Stator copper losses
Kupferverluste Stator
Wiron
P Fe
W
Iron (Core) loss
Eisenverluste
Wwf
PR
W
Windage and friction loss
Ventilations- & Reibungsverluste
WFeS
P Fes
W
Stator Iron (Core) loss
Eisenverluste Stator
WFeR
P Fer
W
Rotor Iron (Core) loss
Eisenverluste Rotor
WstWkg
W/kg
Specific stator teeth core losses
Spezifische Stator-Zahn Eisenverluste
WsyWkg
W/kg
Specific stator yoke core losses
Spezifische Stator-Joch Eisenverluste
Shaft speed at no load
Leerlaufdrehzahl
-1
RPM0
n0
min
Wt_Al
mr
kg
Weight of rotor cage
Gewicht Rotorkäfig
Wt_Cu
ms
kg
Weight of copper in stator wind.
Wicklungsgewicht Stator
Wt_Fe
m
kg
Weight of iron stator / rotor lams
Gesamteisengewicht Stator/Rotor
Wt_Tot
m
kg
Total active weight
Gesamtgewicht (Al+Cu+Fe)
Wf0
PR
W
Windage and friction loss
Ventilations- & Reibungsverluste
Ambient
a
°C
Ambient
Umgebungstemperatur
RoTemp
r
°C
Rotor cage temperature
Rotortemperatur
Temperature calculating method
Temperatur-Berechnungsmethode
TempCalc WdgTemp Wi
°C
Stator winding temperature
Wicklungstemperatur Stator
Rad1
mm
Rotor surface Radius
Außenradius des Läufers
Rad3
mm
Stator outer radius
Außenradius Stator
R-Cage
-
Rotor-cage
Nutform des Rotors
TU Darmstadt
Institut für Elektrische Energiewandlung